
Modern Object Pascal Introduction for

Programmers

Michalis Kamburelis

Table of Contents

1. Why ... 3

2. Basics .. 3

2.1. "Hello world" program ... 3

2.2. Functions, procedures, primitive types ... 4

2.3. Testing (if) ... 6

2.4. Logical, relational and bit-wise operators ... 8

2.5. Testing single expression for multiple values (case) 9

2.6. Enumerated and ordinal types and sets and constant-length arrays 10

2.7. Loops (for, while, repeat, for .. in) .. 11

2.8. Output, logging ... 14

2.9. Converting to a string ... 15

3. Units .. 16

3.1. Units using each other .. 18

3.2. Qualifying identifiers with unit name ... 19

3.3. Exposing one unit identifiers from another ... 22

4. Classes ... 23

4.1. Basics ... 23

4.2. Inheritance, is, as ... 23

4.3. Properties .. 26

4.4. Exceptions - Quick Example ... 29

4.5. Visibility specifiers ... 30

4.6. Default ancestor .. 31

4.7. Self .. 31

4.8. Calling inherited method ... 31

4.9. Virtual methods, override and reintroduce .. 34

5. Freeing classes ... 38

5.1. Remember to free the class instances ... 38

5.2. How to free ... 38

5.3. Manual and automatic freeing .. 39

5.4. The virtual destructor called Destroy .. 42

1

Modern Object Pascal Introduction for Programmers

5.5. Free notification .. 43

5.6. Free notification observer (Castle Game Engine) 46

6. Exceptions ... 47

6.1. Overview ... 47

6.2. Raising .. 48

6.3. Catching .. 49

6.4. Finally (doing things regardless if an exception occurred) 52

6.5. How the exceptions are displayed by various libraries 55

7. Run-time library ... 55

7.1. Input/output using streams ... 55

7.2. Containers (lists, dictionaries) using generics ... 56

7.3. Cloning: TPersistent.Assign .. 62

8. Various language features .. 67

8.1. Local (nested) routines ... 67

8.2. Callbacks (aka events, aka pointers to functions, aka procedural

variables) .. 68

8.3. Generics .. 71

8.4. Overloading ... 73

8.5. Preprocessor ... 73

8.6. Records ... 76

8.7. Old-style objects ... 77

8.8. Pointers ... 78

8.9. Operator overloading .. 79

9. Advanced classes features ... 82

9.1. Private and strict private ... 82

9.2. More stuff inside classes and nested classes ... 82

9.3. Class methods .. 83

9.4. Class references ... 84

9.5. Static class methods ... 87

9.6. Class properties and variables ... 88

9.7. Class helpers .. 89

9.8. Virtual constructors, destructors ... 91

9.9. An exception in constructor .. 91

10. Interfaces .. 93

10.1. Bare (CORBA) interfaces ... 93

10.2. CORBA and COM types of interfaces .. 95

10.3. Interfaces GUIDs .. 97

10.4. Reference-counted (COM) interfaces ... 97

2

Modern Object Pascal Introduction for Programmers

10.5. Using COM interfaces with reference-counting disabled 100

10.6. Typecasting interfaces .. 102

11. About this document ... 105

1. Why

There are many books and resources about Pascal out there, but too many of them

talk about the old Pascal, without classes, units or generics.

So I wrote this quick introduction to what I call modern Object Pascal. Most of the

programmers using it don’t really call it "modern Object Pascal", we just call it "our

Pascal". But when introducing the language, I feel it’s important to emphasize that it’s

a modern, object-oriented language. It evolved a lot since the old (Turbo) Pascal that

many people learned in schools long time ago. Feature-wise, it’s quite similar to C+

+ or Java or C#.

• It has all the modern features you expect — classes, units, interfaces, generics…

• It’s compiled to a fast, native code,

• It’s very type safe,

• High-level but can also be low-level if you need it to be.

It also has excellent, portable and open-source compiler called the Free Pascal

Compiler, http://freepascal.org/ . And an accompanying IDE (editor, debugger, a library

of visual components, form designer) called Lazarus http://lazarus.freepascal.org/ .

Myself, I’m the creator of Castle Game Engine, https://castle-engine.io/ , which is an

open-source 3D and 2D game engine using modern Pascal to create games on many

platforms (Windows, Linux, macOS, Android, iOS, Nintendo Switch; also WebGL is

coming).

This introduction is mostly directed at programmers who already have experience in

other languages. We will not cover here the meanings of some universal concepts, like

"what is a class", we’ll only show how to do them in Pascal.

2. Basics

2.1. "Hello world" program

{$mode objfpc}{$H+}{$J-} // Just use this line in all modern sources

3

http://freepascal.org/
http://lazarus.freepascal.org/
https://castle-engine.io/

Modern Object Pascal Introduction for Programmers

program MyProgram; // Save this file as myprogram.lpr
begin
 WriteLn('Hello world!');
end.

This is a complete program that you can compile and run.

• If you use the command-line FPC, just create a new file myprogram.lpr and

execute fpc myprogram.lpr .

• If you use Lazarus, create a new project (menu Project → New Project → Simple

Program). Save it as myprogram and paste this source code as the main file.

Compile using the menu item Run # Compile.

• This is a command-line program, so in either case — just run the compiled

executable from the command-line.

The rest of this article talks about the Object Pascal language, so don’t expect to

see anything more fancy than the command-line stuff. If you want to see something

cool, just create a new GUI project in Lazarus (Project → New Project → Application).

Voila — a working GUI application, cross-platform, with native look everywhere, using

a comfortable visual component library. The Lazarus and Free Pascal Compiler come

with lots of ready units for networking, GUI, database, file formats (XML, json, images…

), threading and everything else you may need. I already mentioned my cool Castle

Game Engine earlier:)

2.2. Functions, procedures, primitive types

{$mode objfpc}{$H+}{$J-}

program MyProgram;

procedure MyProcedure(const A: Integer);
begin
 WriteLn('A + 10 is: ', A + 10);
end;

function MyFunction(const S: string): string;
begin
 Result := S + 'strings are automatically managed';
end;

var

4

Modern Object Pascal Introduction for Programmers

 X: Single;
begin
 WriteLn(MyFunction('Note: '));
 MyProcedure(5);

 // Division using "/" always makes float result, use "div" for integer
 division
 X := 15 / 5;
 WriteLn('X is now: ', X); // scientific notation
 WriteLn('X is now: ', X:1:2); // 2 decimal places
end.

To return a value from a function, assign something to the magic Result variable.

You can read and set the Result freely, just like a local variable.

function MyFunction(const S: string): string;
begin
 Result := S + 'something';
 Result := Result + ' something more!';
 Result := Result + ' and more!';
end;

You can also treat the function name (like MyFunction in example above) as the

variable, to which you can assign. But I would discourage it in new code, as it looks

"fishy" when used on the right side of the assignment expression. Just use Result
always when you want to read or set the function result.

If you want to call the function itself recursively, you can of course do it. If you’re calling

a parameter-less function recursively, be sure to specify the parenthesis () (even

though in Pascal you can usually omit the parentheses for a parameter-less function),

this makes a recursive call to a parameter-less function different from accessing this

function’s current result. Like this:

function SumIntegersUntilZero: Integer;
var
 I: Integer;
begin
 Readln(I);
 Result := I;
 if I <> 0 then
 Result := Result + SumIntegersUntilZero();
end;

5

Modern Object Pascal Introduction for Programmers

You can call Exit to end the execution of the procedure or function before it reaches

the final end; . If you call parameter-less Exit in a function, it will return the last

thing you set as Result . You can also use Exit(X) construct, to set the function

result and exit now — this is just like return X construct in C-like languages.

function AddName(const ExistingNames, NewName: string): string;
begin
 if ExistingNames = '' then
 Exit(NewName);
 Result := ExistingNames + ', ' + NewName;
end;

Note that the function result can be discarded. Any function may be used just like a

procedure. This makes sense if the function has some side effect (e.g. it modifies a

global variable) besides calculating the result. For example:

var
 Count: Integer;
 MyCount: Integer;

function CountMe: Integer;
begin
 Inc(Count);
 Result := Count;
end;

begin
 Count := 10;
 CountMe; // the function result is discarded, but the function is
 executed, Count is now 11
 MyCount := CountMe; // use the result of the function, MyCount equals to
 Count which is now 12
end.

2.3. Testing (if)

Use if .. then or if .. then .. else to run some code when some condition is

satisfied. Unlike in the C-like languages, in Pascal you don’t have to wrap the condition

in parenthesis.

var

6

Modern Object Pascal Introduction for Programmers

 A: Integer;
 B: boolean;
begin
 if A > 0 then
 DoSomething;

 if A > 0 then
 begin
 DoSomething;
 AndDoSomethingMore;
 end;

 if A > 10 then
 DoSomething
 else
 DoSomethingElse;

 // equivalent to above
 B := A > 10;
 if B then
 DoSomething
 else
 DoSomethingElse;
end;

The else is paired with the last if . So this works as you expect:

if A <> 0 then
 if B <> 0 then
 AIsNonzeroAndBToo
 else
 AIsNonzeroButBIsZero;

While the example with nested if above is correct, it is often better to place the

nested if inside a begin … end block in such cases. This makes the code more

obvious to the reader, and it will remain obvious even if you mess up the indentation.

The improved version of the example is below. When you add or remove some else
clause in the code below, it’s obvious to which condition it will apply (to the A test or

the B test), so it’s less error-prone.

if A <> 0 then
begin
 if B <> 0 then

7

Modern Object Pascal Introduction for Programmers

 AIsNonzeroAndBToo
 else
 AIsNonzeroButBIsZero;
end;

2.4. Logical, relational and bit-wise operators

The logical operators are called and , or , not , xor . Their meaning is probably

obvious (search for "exclusive or" if you’re unsure what xor does:)). They take boolean

arguments, and return a boolean. They can also act as bit-wise operators when both

arguments are integer values, in which case they return an integer.

The relational (comparison) operators are = , <> , > , < , <= , >= . If you’re

accustomed to C-like languages, note that in Pascal you compare two values (check

are they equal) using a single equality character A = B (unlike in C where you use

A == B). The special assignment operator in Pascal is := .

The logical (or bit-wise) operators have a higher precedence than relational operators.

You may need to use parenthesis around some expressions to have the desired order

of the calculations.

For example this is a compilation error:

var
 A, B: Integer;
begin
 if A = 0 and B <> 0 then ... // INCORRECT example

The above fails to compile, because the compiler first wants to perform a bit-wise and
in the middle of the expression: (0 and B) . This is a bit-wise operation which returns

an integer value. Then the compiler applies = operator which yields a boolean value

A = (0 and B) . And finally the "type mismatch" error is risen after trying to compare

the boolean value A = (0 and B) and integer value 0 .

This is correct:

var
 A, B: Integer;
begin
 if (A = 0) and (B <> 0) then ...

8

Modern Object Pascal Introduction for Programmers

The short-circuit evaluation is used. Consider this expression:

if MyFunction(X) and MyOtherFunction(Y) then...

• It’s guaranteed that MyFunction(X) will be evaluated first.

• And if MyFunction(X) returns false , then the value of expression is

known (the value of false and whatever is always false), and

MyOtherFunction(Y) will not be executed at all.

• Analogous rule is for or expression. There, if the expression is known to be true
(because the 1st operand is true), the 2nd operand is not evaluated.

• This is particularly useful when writing expressions like

if (A <> nil) and A.IsValid then...

This will work OK, even when A is nil . The keyword nil is a pointer equal

to zero (when represented as a number). It is called a null pointer in many other

programming languages.

2.5. Testing single expression for multiple values (case)

If a different action should be executed depending on the value of some expression,

then the case .. of .. end statement is useful.

case SomeValue of
 0: DoSomething;
 1: DoSomethingElse;
 2: begin
 IfItsTwoThenDoThis;
 AndAlsoDoThis;
 end;
 3..10: DoSomethingInCaseItsInThisRange;
 11, 21, 31: AndDoSomethingForTheseSpecialValues;
 else DoSomethingInCaseOfUnexpectedValue;
end;

The else clause is optional (and corresponds to default in C-like languages).

When no condition matches, and there’s no else , then nothing happens.

In you come from C-like languages, and compare this with switch statement in these

languages, you will notice that there is no automatic fall-through. This is a deliberate

9

Modern Object Pascal Introduction for Programmers

blessing in Pascal. You don’t have to remember to place break instructions. In every

execution, at most one branch of the case is executed, that’s it.

2.6. Enumerated and ordinal types and sets and constant-length

arrays

Enumerated type in Pascal is a very nice, opaque type. You will probably use it much

more often than enums in other languages:)

type
 TAnimalKind = (akDuck, akCat, akDog);

The convention is to prefix the enum names with a two-letter shortcut of type name,

hence ak = shortcut for "Animal Kind". This is a useful convention, since the enum

names are in the unit (global) namespace. So by prefixing them with ak prefix, you

minimize the chances of collisions with other identifiers.

The collisions in names are not a show-stopper. It’s Ok for different

units to define the same identifier. But it’s a good idea to try to avoid

the collisions anyway, to keep code simple to understand and grep.

You can avoid placing enum names in the global namespace

by compiler directive {$scopedenums on} . This means

you will have to access them qualified by a type name, like

TAnimalKind.akDuck . The need for ak prefix disappears in this

situation, and you will probably just call the enums Duck, Cat,
Dog . This is similar to C# enums.

The fact that enumerated type is opaque means that it cannot be just assigned to

and from an integer. However, for special use, you can use Ord(MyAnimalKind) to

forcefully convert enum to int, or typecast TAnimalKind(MyInteger) to forcefully

convert int to enum. In the latter case, make sure to check first whether MyInteger
is in good range (0 to Ord(High(TAnimalKind))).

Enumerated and ordinal types can be used as array indexes:

type
 TArrayOfTenStrings = array [0..9] of string;
 TArrayOfTenStrings1Based = array [1..10] of string;

10

Modern Object Pascal Introduction for Programmers

 TMyNumber = 0..9;
 TAlsoArrayOfTenStrings = array [TMyNumber] of string;

 TAnimalKind = (akDuck, akCat, akDog);
 TAnimalNames = array [TAnimalKind] of string;

They can also be used to create sets (a bit-fields internally):

type
 TAnimalKind = (akDuck, akCat, akDog);
 TAnimals = set of TAnimalKind;
var
 A: TAnimals;
begin
 A := [];
 A := [akDuck, akCat];
 A := A + [akDog];
 A := A * [akCat, akDog];
 Include(A, akDuck);
 Exclude(A, akDuck);
end;

2.7. Loops (for, while, repeat, for .. in)

{$mode objfpc}{$H+}{$J-}
{$R+} // range checking on - nice for debugging
var
 MyArray: array [0..9] of Integer;
 I: Integer;
begin
 // initialize
 for I := 0 to 9 do
 MyArray[I] := I * I;

 // show
 for I := 0 to 9 do
 WriteLn('Square is ', MyArray[I]);

 // does the same as above
 for I := Low(MyArray) to High(MyArray) do
 WriteLn('Square is ', MyArray[I]);

 // does the same as above

11

Modern Object Pascal Introduction for Programmers

 I := 0;
 while I < 10 do
 begin
 WriteLn('Square is ', MyArray[I]);
 I := I + 1; // or "I += 1", or "Inc(I)"
 end;

 // does the same as above
 I := 0;
 repeat
 WriteLn('Square is ', MyArray[I]);
 Inc(I);
 until I = 10;

 // does the same as above
 // note: here I enumerates MyArray values, not indexes
 for I in MyArray do
 WriteLn('Square is ', I);
end.

About the repeat and while loops:

There are two differences between these loop types:

1. The loop condition has an opposite meaning. In while .. do you tell it when to

continue, but in repeat .. until you tell it when to stop.

2. In case of repeat , the condition is not checked at the beginning. So the repeat
loop always runs at least once.

About the for I := … loops:

The for I := .. to .. do … construction it similar to the C-like for loop.

However, it’s more constrained, as you cannot specify arbitrary actions/tests to control

the loop iteration. This is strictly for iterating over a consecutive numbers (or other

ordinal types). The only flexibility you have is that you can use downto instead of to ,

to make numbers go downward.

In exchange, it looks clean, and is very optimized in execution. In particular, the

expressions for the lower and higher bound are only calculated once, before the loop

starts.

Note that the value of the loop counter variable (I in this example) should be

considered undefined after the loop has finished, due to possible optimizations.

12

Modern Object Pascal Introduction for Programmers

Accessing the value of I after the loop may cause a compiler warning. Unless you

exit the loop prematurely by Break or Exit : in such case, the counter variable is

guaranteed to retain the last value.

About the for I in … loops:

The for I in .. do .. is similar to foreach construct in many modern

languages. It works intelligently on many built-in types:

• It can iterate over all values in the array (example above).

• It can iterate over all possible values of an enumerated type:

var
 AK: TAnimalKind;
begin
 for AK in TAnimalKind do...

• It can iterate over all items included in the set:

var
 Animals: TAnimals;
 AK: TAnimalKind;
begin
 Animals := [akDog, akCat];
 for AK in Animals do ...

• And it works on custom list types, generic or not, like TObjectList or

TFPGObjectList .

{$mode objfpc}{$H+}{$J-}
uses
 SysUtils, FGL;

type
 TMyClass = class
 I, Square: Integer;
 end;
 TMyClassList = specialize TFPGObjectList<TMyClass>;

var
 List: TMyClassList;
 C: TMyClass;
 I: Integer;

13

Modern Object Pascal Introduction for Programmers

begin
 List := TMyClassList.Create(true); // true = owns children
 try
 for I := 0 to 9 do
 begin
 C := TMyClass.Create;
 C.I := I;
 C.Square := I * I;
 List.Add(C);
 end;

 for C in List do
 WriteLn('Square of ', C.I, ' is ', C.Square);
 finally
 FreeAndNil(List);
 end;
end.

We didn’t yet explain the concept of classes, so the last example may not be obvious

to you yet — just carry on, it will make sense later:)

2.8. Output, logging

To simply output strings in Pascal, use the Write or WriteLn routine. The latter

automatically adds a newline at the end.

This is a "magic" routine in Pascal. It takes a variable number of arguments and they

can have any type. They are all converted to strings when displaying, with a special

syntax to specify padding and number precision.

WriteLn('Hello world!');
WriteLn('You can output an integer: ', 3 * 4);
WriteLn('You can pad an integer: ', 666:10);
WriteLn('You can output a float: ', Pi:1:4);

To explicitly use newline in the string, use the LineEnding constant (from FPC RTL).

(The Castle Game Engine defines also a shorter NL constant.) Pascal strings do not

interpret any special backslash sequences, so writing

WriteLn('One line.\nSecond line.'); // INCORRECT example

doesn’t work like some of you would think. This will work:

14

Modern Object Pascal Introduction for Programmers

WriteLn('One line.' + LineEnding + 'Second line.');

or just this:

WriteLn('One line.');
WriteLn('Second line.');

Note that this will only work in console applications. Make sure you have {$apptype
CONSOLE} (and not {$apptype GUI}) defined in your main program file. On

some operating systems it actually doesn’t matter and will work always (Unix), but on

some operating systems trying to write something from a GUI application is an error

(Windows).

In the Castle Game Engine: use WriteLnLog or WriteLnWarning , never

WriteLn , to print debug information. They will be always directed to some useful

output. On Unix, standard output. On Windows GUI application, log file. On Android,

the Android logging facility (visible when you use adb logcat). The use of WriteLn
should be limited to the cases when you write a command-line application (like a 3D

model converter / generator) and you know that the standard output is available.

2.9. Converting to a string

To convert an arbitrary number of arguments to a string (instead of just directly

outputting them), you have a couple of options.

• You can convert particular types to strings using specialized functions like

IntToStr and FloatToStr . Furthermore, you can concatenate strings in

Pascal simply by adding them. So you can create a string like this: 'My int
number is ' + IntToStr(MyInt) + ', and the value of Pi is '
+ FloatToStr(Pi) .

Advantage: Absolutely flexible. There are many XxxToStr overloaded

versions and friends (like FormatFloat), covering many types. Most of them

are in the SysUtils unit.

Another advantage: Consistent with the reverse functions. To convert a string

(for example, user input) back to an integer or float, you use StrToInt ,

StrToFloat and friends (like StrToIntDef).

Disadvantage: A long concatenation of many XxxToStr calls and strings

doesn’t look nice.

15

Modern Object Pascal Introduction for Programmers

• The Format function, used like Format('%d %f %s', [MyInt, MyFloat,
MyString]) . This is like sprintf function in the C-like languages. It inserts the

arguments into the placeholders in the pattern. The placeholders may use special

syntax to influence formatting, e.g. %.4f results in a floating-point format with 4

digits after the decimal point.

Advantage: The separation of pattern string from arguments looks clean. If you

need to change the pattern string without touching the arguments (e.g. when

translating), you can do it easily.

Another advantage: No compiler magic. You can use the same syntax to pass

any number of arguments of an arbitrary type in your own routines (declare

parameter as an array of const). You can then pass these arguments

downward to Format , or deconstruct the list of parameters and do anything

you like with them.

Disadvantage: Compiler does not check whether the pattern matches the

arguments. Using a wrong placeholder type will result in an exception at runtime

(EConvertError exception, not anything nasty like a segmentation fault).

• WriteStr(TargetString, …) routine behaves much like Write(…) , except

that the result is saved to the TargetString .

Advantage: It supports all the features of Write , including the special syntax

for formatting like Pi:1:4 .

Disadvantage: The special syntax for formatting is a "compiler magic",

implemented specifically for routines like this. This is sometimes troublesome,

e.g. you cannot create your own routine MyStringFormatter(…) that would

also allow the special syntax like Pi:1:4 . For this reason (and also because it

wasn’t implemented for a long time in major Pascal compilers), this construction

is not very popular.

3. Units

Units allow you to group common stuff (anything that can be declared), for usage

by other units and programs. They are equivalent to modules and packages in other

languages. They have an interface section, where you declare what is available

for other units and programs, and then the implementation. Save unit MyUnit as

myunit.pas (lowercase with .pas extension).

{$mode objfpc}{$H+}{$J-}

16

Modern Object Pascal Introduction for Programmers

unit MyUnit;
interface

procedure MyProcedure(const A: Integer);
function MyFunction(const S: string): string;

implementation

procedure MyProcedure(const A: Integer);
begin
 WriteLn('A + 10 is: ', A + 10);
end;

function MyFunction(const S: string): string;
begin
 Result := S + 'strings are automatically managed';
end;

end.

Final programs are saved as myprogram.lpr files (lpr = Lazarus program file; in

Delphi you would use .dpr). Note that other conventions are possible here, e.g. some

projects just use .pas for main program file, some use .pp for units or programs. I

advise using .pas for units and .lpr for FPC/Lazarus programs.

A program can use a unit by a uses keyword:

{$mode objfpc}{$H+}{$J-}

program MyProgram;

uses
 MyUnit;

begin
 WriteLn(MyFunction('Note: '));
 MyProcedure(5);
end.

A unit may also contain initialization and finalization sections. This is the

code executed when the program starts and ends.

{$mode objfpc}{$H+}{$J-}

17

Modern Object Pascal Introduction for Programmers

unit initialization_finalization;
interface

implementation

initialization
 WriteLn('Hello world!');
finalization
 WriteLn('Goodbye world!');
end.

3.1. Units using each other

One unit can also use another unit. Another unit can be used in the interface section,

or only in the implementation section. The former allows to define new public stuff

(procedures, types…) on top of another unit’s stuff. The latter is more limited (if you

use a unit only in the implementation section, you can use its identifiers only in your

implementation).

{$mode objfpc}{$H+}{$J-}
unit AnotherUnit;
interface

uses
 Classes;

{ The "TComponent" type (class) is defined in the Classes unit.
 That's why we had to use the Classes unit above. }
procedure DoSomethingWithComponent(var C: TComponent);

implementation

uses SysUtils;

procedure DoSomethingWithComponent(var C: TComponent);
begin
 { The FreeAndNil procedure is defined in the SysUtils unit.
 Since we only refer to its name in the implementation,
 it was OK to use the SysUtils unit in the "implementation" section. }
 FreeAndNil(C);
end;

end.

18

Modern Object Pascal Introduction for Programmers

It is not allowed to have circular unit dependencies in the interface. That is, two

units cannot use each other in the interface section. The reason is that in order to

"understand" the interface section of a unit, the compiler must first "understand" all the

units it uses in the interface section. Pascal language follows this rule strictly, and it

allows a fast compilation and fully automatic detection on the compiler side what units

need to be recompiled. There is no need to use complicated Makefile files for a

simple task of compilation in Pascal, and there is no need to recompile everything just

to make sure that all dependencies are updated correctly.

It is OK to make a circular dependency between units when at least one "usage" is only

in the implementation. So it’s OK for unit A to use unit B in the interface, and then

unit B to use unit A in the implementation.

3.2. Qualifying identifiers with unit name

Different units may define the same identifier. To keep the code simple to read and

search, you should usually avoid it, but it’s not always possible. In such cases, the last

unit on the uses clause "wins", which means that the identifiers it introduces hide the

same identifiers introduced by earlier units.

You can always explicitly define a unit of a given identifier, by using it like

MyUnit.MyIdentifier . This is the usual solution when the identifier you want to

use from MyUnit is hidden by another unit. Of course you can also rearrange the

order of units on your uses clause, although this can affect other declarations than the

one you’re trying to fix.

{$mode objfpc}{$H+}{$J-}
program showcolor;

// Both Graphics and GoogleMapsEngine units define TColor type.
uses Graphics, GoogleMapsEngine;

var
 { This doesn't work like we want, as TColor ends up
 being defined by GoogleMapsEngine. }
 // Color: TColor;
 { This works Ok. }
 Color: Graphics.TColor;
begin
 Color := clYellow;
 WriteLn(Red(Color), ' ', Green(Color), ' ', Blue(Color));
end.

19

Modern Object Pascal Introduction for Programmers

In case of units, remember that they have two uses clauses: one in the interface, and

another one in the implementation. The rule later units hide the stuff from earlier units

is applied here consistently, which means that units used in the implementation section

can hide identifiers from units used in the interface section. However, remember that

when reading the interface section, only the units used in the interface matter.

This may create a confusing situation, where two seemingly-equal declarations are

considered different by the compiler:

{$mode objfpc}{$H+}{$J-}
unit UnitUsingColors;

// INCORRECT example

interface

uses Graphics;

procedure ShowColor(const Color: TColor);

implementation

uses GoogleMapsEngine;

procedure ShowColor(const Color: TColor);
begin
 // WriteLn(ColorToString(Color));
end;

end.

The unit Graphics (from Lazarus LCL) defines the TColor type. But the

compiler will fail to compile the above unit, claiming that you don’t implement a

procedure ShowColor that matches the interface declaration. The problem is that

unit GoogleMapsEngine also defines a TColor type. And it is used only in the

implementation section, therefore it shadows the TColor definition only in the

implementation. The equivalent version of the above unit, where the error is obvious,

looks like this:

{$mode objfpc}{$H+}{$J-}
unit UnitUsingColors;

// INCORRECT example.

20

Modern Object Pascal Introduction for Programmers

// This is what the compiler "sees" when trying to compile previous
 example

interface

uses Graphics;

procedure ShowColor(const Color: Graphics.TColor);

implementation

uses GoogleMapsEngine;

procedure ShowColor(const Color: GoogleMapsEngine.TColor);
begin
 // WriteLn(ColorToString(Color));
end;

end.

The solution is trivial in this case, just change the implementation to explicitly

use TColor from Graphics unit. You could fix it also by moving the

GoogleMapsEngine usage, to the interface section and earlier than Graphics ,

although this could result in other consequences in real-world cases, when

UnitUsingColors would define more things.

{$mode objfpc}{$H+}{$J-}
unit UnitUsingColors;

interface

uses Graphics;

procedure ShowColor(const Color: TColor);

implementation

uses GoogleMapsEngine;

procedure ShowColor(const Color: Graphics.TColor);
begin
 // WriteLn(ColorToString(Color));
end;

21

Modern Object Pascal Introduction for Programmers

end.

3.3. Exposing one unit identifiers from another

Sometimes you want to take an identifier from one unit, and expose it in a new unit.

The end result should be that using the new unit will make the identifier available in

the namespace.

Sometimes this is necessary to preserve backward compatibility with previous unit

versions. Sometimes it’s nice to "hide" an internal unit this way.

This can be done by redefining the identifier in your new unit.

{$mode objfpc}{$H+}{$J-}
unit MyUnit;

interface

uses Graphics;

type
 { Expose TColor from Graphics unit as TMyColor. }
 TMyColor = TColor;

 { Alternatively, expose it under the same name.
 Qualify with unit name in this case, otherwise
 we would refer to ourselves with "TColor = TColor" definition. }
 TColor = Graphics.TColor;

const
 { This works with constants too. }
 clYellow = Graphics.clYellow;
 clBlue = Graphics.clBlue;

implementation

end.

Note that this trick cannot be done as easily with global procedures, functions and

variables. With procedures and functions, you could expose a constant pointer to a

procedure in another unit (see Section 8.2, “Callbacks (aka events, aka pointers to

functions, aka procedural variables)”), but that looks quite dirty.

22

Modern Object Pascal Introduction for Programmers

The usual solution is then to create a trivial "wrapper" functions that underneath simply

call the functions from the internal unit, passing the parameters and return values

around.

To make this work with global variables, one can use global (unit-level) properties, see

Section 4.3, “Properties”.

4. Classes

4.1. Basics

We have classes. At the basic level, a class is just a container for

• fields (which is fancy name for "a variable inside a class"),

• methods (which is fancy name for "a procedure or function inside a class"),

• and properties (which is a fancy syntax for something that looks like a field, but is in

fact a pair of methods to get and set something; more in Section 4.3, “Properties”).

• Actually, there are more possibilities, described in Section 9.2, “More stuff inside

classes and nested classes”.

type
 TMyClass = class
 MyInt: Integer; // this is a field
 property MyIntProperty: Integer read MyInt write MyInt; // this is a
 property
 procedure MyMethod; // this is a method
 end;

procedure TMyClass.MyMethod;
begin
 WriteLn(MyInt + 10);
end;

4.2. Inheritance, is, as

We have inheritance and virtual methods.

{$mode objfpc}{$H+}{$J-}

23

Modern Object Pascal Introduction for Programmers

program MyProgram;

uses
 SysUtils;

type
 TMyClass = class
 MyInt: Integer;
 procedure MyVirtualMethod; virtual;
 end;

 TMyClassDescendant = class(TMyClass)
 procedure MyVirtualMethod; override;
 end;

procedure TMyClass.MyVirtualMethod;
begin
 WriteLn('TMyClass shows MyInt + 10: ', MyInt + 10);
end;

procedure TMyClassDescendant.MyVirtualMethod;
begin
 WriteLn('TMyClassDescendant shows MyInt + 20: ', MyInt + 20);
end;

var
 C: TMyClass;
begin
 C := TMyClass.Create;
 try
 C.MyVirtualMethod;
 finally
 FreeAndNil(C);
 end;

 C := TMyClassDescendant.Create;
 try
 C.MyVirtualMethod;
 finally
 FreeAndNil(C);
 end;
end.

By default methods are not virtual, declare them with virtual to make them.

Overrides must be marked with override , otherwise you will get a warning. To hide

24

Modern Object Pascal Introduction for Programmers

a method without overriding (usually you don’t want to do this, unless you now what

you’re doing) use reintroduce .

To test the class of an instance at runtime, use the is operator. To typecast the

instance to a specific class, use the as operator.

{$mode objfpc}{$H+}{$J-}
program is_as;

uses
 SysUtils;

type
 TMyClass = class
 procedure MyMethod;
 end;

 TMyClassDescendant = class(TMyClass)
 procedure MyMethodInDescendant;
 end;

procedure TMyClass.MyMethod;
begin
 WriteLn('MyMethod');
end;

procedure TMyClassDescendant.MyMethodInDescendant;
begin
 WriteLn('MyMethodInDescendant');
end;

var
 Descendant: TMyClassDescendant;
 C: TMyClass;
begin
 Descendant := TMyClassDescendant.Create;
 try
 Descendant.MyMethod;
 Descendant.MyMethodInDescendant;

 { Descendant has all functionality expected of
 the TMyClass, so this assignment is OK }
 C := Descendant;
 C.MyMethod;

25

Modern Object Pascal Introduction for Programmers

 { this cannot work, since TMyClass doesn't define this method }
 //C.MyMethodInDescendant;
 if C is TMyClassDescendant then
 (C as TMyClassDescendant).MyMethodInDescendant;

 finally
 FreeAndNil(Descendant);
 end;
end.

Instead of casting using X as TMyClass , you can also use the unchecked typecast

TMyClass(X) . This is faster, but results in an undefined behavior if the X is not,

in fact, a TMyClass descendant. So don’t use the TMyClass(X) typecast, or use

it only in a code where it’s blindingly obvious that it’s correct, for example right after

testing with is :

if A is TMyClass then
 (A as TMyClass).CallSomeMethodOfMyClass;
// below is marginally faster
if A is TMyClass then
 TMyClass(A).CallSomeMethodOfMyClass;

4.3. Properties

Properties are a very nice "syntax sugar" to

1. Make something that looks like a field (can be read and set) but underneath is

realized by calling a getter and setter methods. The typical usage is to perform

some side-effect (e.g. redraw the screen) each time some value changes.

2. Make something that looks like a field, but is read-only. In effect, it’s like a constant

or a parameter-less function.

type
 TWebPage = class
 private
 FURL: string;
 FColor: TColor;
 function SetColor(const Value: TColor);
 public
 { No way to set it directly.
 Call the Load method, like Load('http://www.freepascal.org/'),

26

Modern Object Pascal Introduction for Programmers

 to load a page and set this property. }
 property URL: string read FURL;
 procedure Load(const AnURL: string);
 property Color: TColor read FColor write SetColor;
 end;

procedure TWebPage.Load(const AnURL: string);
begin
 FURL := AnURL;
 NetworkingComponent.LoadWebPage(AnURL);
end;

function TWebPage.SetColor(const Value: TColor);
begin
 if FColor <> Value then
 begin
 FColor := Value;
 // for example, cause some update each time value changes
 Repaint;
 // as another example, make sure that some underlying instance,
 // like a "RenderingComponent" (whatever that is),
 // has a synchronized value of Color.
 RenderingComponent.Color := Value;
 end;
end;

Note that instead of specifying a method, you can also specify a field (typically a private

field) to directly get or set. In the example above, the Color property uses a setter

method SetColor . But for getting the value, the Color property refers directly to

the private field FColor . Directly referring to a field is faster than implementing trivial

getter or setter methods (faster for you, and faster at execution).

When declaring a property you specify:

1. Whether it can be read, and how (by directly reading a field, or by using a "getter"

method).

2. And, in a similar manner, whether it can be set, and how (by directly writing to a

designated field, or by calling a "setter" method).

The compiler checks that the types and parameters of indicated fields and methods

match with the property type. For example, to read an Integer property you have

to either provide an Integer field, or a parameter-less method that returns an

Integer .

27

Modern Object Pascal Introduction for Programmers

Technically, for the compiler, the "getter" and "setter" methods are just normal methods

and they can do absolutely anything (including side-effects or randomization). But it’s

a good convention to design properties to behave more-or-less like fields:

• The getter function should have no visible side-effects (e.g. it should not read some

input from file / keyboard). It should be deterministic (no randomization, not even

pseudo-randomization :). Reading a property many times should be valid, and return

the same value, if nothing changed in-between.

Note that it’s OK for getter to have some invisible side-effect, for example to cache

a value of some calculation (known to produce the same results for given instance),

to return it faster next time. This is in fact one of the cool possibilities of a "getter"

function.

• The setter function should always set the requested value, such that calling the

getter yields it back. Do not reject invalid values silently in the "setter" (raise an

exception if you must). Do not convert or scale the requested value. The idea is

that after MyClass.MyProperty := 123; the programmer can expect that

MyClass.MyProperty = 123 .

• The read-only properties are often used to make some field read-only from the

outside. Again, the good convention is to make it behave like a constant, at least

constant for this object instance with this state. The value of the property should not

change unexpectedly. Make it a function, not a property, if using it has a side effect

or returns something random.

• The "backing" field of a property is almost always private, since the idea of a property

is to encapsulate all outside access to it.

• It’s technically possible to make set-only properties, but I have not yet seen a good

example of such thing:)

Properties can also be defined outside of class, at a unit level. They

serve an analogous purpose then: look like a global variable, but are

backed by a getter and setter routines.

Serialization of properties

Published properties are the basis of a serialization (also known as streaming

components) in Pascal. Serialization means that the instance data is recorded into a

stream (like a file), from which it can be later restored.

Serialization is what happens when Lazarus reads (or writes) the component state from

an xxx.lfm file. (In Delphi, the equivalent file has .dfm extension.) You can also

28

Modern Object Pascal Introduction for Programmers

use this mechanism explicitly, using routines like ReadComponentFromTextStream
from the LResources unit. You can also use other serialization algorithms, e.g.

FpJsonRtti unit (serializing to JSON).

In the Castle Game Engine: Use the CastleComponentSerialize unit (based

on FpJsonRtti) to serialize our user-interface and transformation component

hierarchies.

At each property, you can declare some additional things that will be helpful for any

serialization algorithm:

• You can specify the property default value (using the default keyword). Note

that you are still required to initialize the property in the constructor to this exact

default value (it is not done automatically). The default declaration is merely an

information to the serialization algorithm: "when the constructor finishes, the given

property has the given value".

• Whether the property should be stored at all (using the stored keyword).

4.4. Exceptions - Quick Example

We have exceptions. They can be caught with try … except … end clauses, and

we have finally sections like try … finally … end .

{$mode objfpc}{$H+}{$J-}

program MyProgram;

uses
 SysUtils;

type
 TMyClass = class
 procedure MyMethod;
 end;

procedure TMyClass.MyMethod;
begin
 if Random > 0.5 then
 raise Exception.Create('Raising an exception!');
end;

var

29

Modern Object Pascal Introduction for Programmers

 C: TMyClass;
begin
 Randomize;
 C := TMyClass.Create;
 try
 C.MyMethod;
 finally
 FreeAndNil(C);
 end;
end.

Note that the finally clause is executed even if you exit the block using the Exit
(from function / procedure / method) or Break or Continue (from loop body).

See the Section 6, “Exceptions” chapter for more in-depth description of exceptions.

4.5. Visibility specifiers

As in most object-oriented languages, we have visibility specifiers to hide fields /

methods / properties.

The basic visibility levels are:

public
everyone can access it, including the code in other units.

private
only accessible in this class.

protected
only accessible in this class and descendants.

The explanation of private and protected visibility above is not precisely true.

The code in the same unit can overcome their limits, and access the private and

protected stuff freely. Sometimes this is a nice feature, allows you to implement

tightly-connected classes. Use strict private or strict protected to secure

your classes more tightly. See the Section 9.1, “Private and strict private”.

By default, if you don’t specify the visibility, then the visibility of declared stuff is

public . The exception is for classes compiled with {$M+} , or descendants of

classes compiled with {$M+} , which includes all descendants of TPersistent ,

which also includes all descendants of TComponent (since TComponent descends

from TPersistent). For them, the default visibility specifier is published , which

is like public , but in addition the streaming system knows to handle this.

30

Modern Object Pascal Introduction for Programmers

Not every field and property type is allowed in the published section (not every

type can be streamed, and only classes can be streamed from simple fields). Just use

public if you don’t care about streaming but want something available to all users.

4.6. Default ancestor

If you don’t declare the ancestor type, every class inherits from TObject .

4.7. Self

The special keyword Self can be used within the class implementation to explicitly

refer to your own instance. It is equivalent to this from C++, Java and similar

languages.

4.8. Calling inherited method

Within a method implementation, if you call another method, then by default you call the

method of your own class. In the example code below, TMyClass2.MyOtherMethod
calls MyMethod , which ends up calling TMyClass2.MyMethod .

{$mode objfpc}{$H+}{$J-}
uses SysUtils;

type
 TMyClass1 = class
 procedure MyMethod;
 end;

 TMyClass2 = class(TMyClass1)
 procedure MyMethod;
 procedure MyOtherMethod;
 end;

procedure TMyClass1.MyMethod;
begin
 Writeln('TMyClass1.MyMethod');
end;

procedure TMyClass2.MyMethod;
begin
 Writeln('TMyClass2.MyMethod');
end;

31

Modern Object Pascal Introduction for Programmers

procedure TMyClass2.MyOtherMethod;
begin
 MyMethod; // this calls TMyClass2.MyMethod
end;

var
 C: TMyClass2;
begin
 C := TMyClass2.Create;
 try
 C.MyOtherMethod;
 finally FreeAndNil(C) end;
end.

If the method is not defined in a given class, then it calls the method of an ancestor

class. In effect, when you call MyMethod on an instance of TMyClass2 , then

• The compiler looks for TMyClass2.MyMethod .

• If not found, it looks for TMyClass1.MyMethod .

• If not found, it looks for TObject.MyMethod .

• if not found, then the compilation fails.

You can test it by commenting out the TMyClass2.MyMethod definition

in the example above. In effect, TMyClass1.MyMethod will be called by

TMyClass2.MyOtherMethod .

Sometimes, you don’t want to call the method of your own class. You want to call the

method of an ancestor (or ancestor’s ancestor, and so on). To do this, add the keyword

inherited before the call to MyMethod , like this:

inherited MyMethod;

This way you force the compiler to start searching from an ancestor class.

In our example, it means that compiler is searching for MyMethod inside

TMyClass1.MyMethod , then TObject.MyMethod , and then gives up. It does not

even consider using the implementation of TMyClass2.MyMethod .

Go ahead, change the implementation of

TMyClass2.MyOtherMethod above to use inherited
MyMethod , and see the difference in the output.

32

Modern Object Pascal Introduction for Programmers

The inherited call is often used to call the ancestor method of the same name. This

way the descendants can enhance the ancestors (keeping the ancestor functionality,

instead of replacing the ancestor functionality). Like in the example below.

{$mode objfpc}{$H+}{$J-}
uses SysUtils;

type
 TMyClass1 = class
 constructor Create;
 procedure MyMethod(const A: Integer);
 end;

 TMyClass2 = class(TMyClass1)
 constructor Create;
 procedure MyMethod(const A: Integer);
 end;

constructor TMyClass1.Create;
begin
 inherited Create; // this calls TObject.Create
 Writeln('TMyClass1.Create');
end;

procedure TMyClass1.MyMethod(const A: Integer);
begin
 Writeln('TMyClass1.MyMethod ', A);
end;

constructor TMyClass2.Create;
begin
 inherited Create; // this calls TMyClass1.Create
 Writeln('TMyClass2.Create');
end;

procedure TMyClass2.MyMethod(const A: Integer);
begin
 inherited MyMethod(A); // this calls TMyClass1.MyMethod
 Writeln('TMyClass2.MyMethod ', A);
end;

var
 C: TMyClass2;
begin

33

Modern Object Pascal Introduction for Programmers

 C := TMyClass2.Create;
 try
 C.MyMethod(123);
 finally FreeAndNil(C) end;
end.

Since using inherited to call a method with the same name, with the same

arguments, is a very often case, there is a special shortcut for it: you can just write

inherited; (inherited keyword followed immediately by a semicolon, instead

of a method name). This means "call an inherited method with the same name, passing

it the same arguments as the current method".

In the above example, all the inherited …; calls could be

replaced by a simple inherited; .

Note 1: The inherited; is really just a shortcut for calling the ancestor’s method

with the same variables passed in. If you have modified your own parameter (which

is possible, if the parameter is not const), then the ancestor’s method can receive

different input values from your descendant. Consider this:

procedure TMyClass2.MyMethod(A: Integer);
begin
 Writeln('TMyClass2.MyMethod beginning ', A);
 A := 456;
 { This calls TMyClass1.MyMethod with A = 456,
 regardless of the A value passed to this method
 (TMyClass2.MyMethod). }
 inherited;
 Writeln('TMyClass2.MyMethod ending ', A);
end;

Note 2: You usually want to make the MyMethod virtual when many classes (along

the "inheritance chain") define it. More about the virtual methods in the section below.

But the inherited keyword works regardless if the method is virtual or not. The

inherited always means that the compiler starts searching for the method in an

ancestor, and it makes sense for both virtual and not virtual methods.

4.9. Virtual methods, override and reintroduce

By default, the methods are not virtual. This is similar to C++, and unlike Java.

34

Modern Object Pascal Introduction for Programmers

When a method is not virtual, the compiler determines which method to call based on

the currently declared class type, not based on the actually created class type. The

difference seems subtle, but it’s important when your variable is declared to have a

class like TFruit , but it may be in fact a descendant class like TApple .

The idea of the object-oriented programming is that the descendant class is always as

good as the ancestor, so the compiler allows to use a descendant class always when

the ancestor is expected. When your method is not virtual, this can have undesired

consequences. Consider the example below:

{$mode objfpc}{$H+}{$J-}
uses SysUtils;

type
 TFruit = class
 procedure Eat;
 end;

 TApple = class(TFruit)
 procedure Eat;
 end;

procedure TFruit.Eat;
begin
 Writeln('Eating a fruit');
end;

procedure TApple.Eat;
begin
 Writeln('Eating an apple');
end;

procedure DoSomethingWithAFruit(const Fruit: TFruit);
begin
 Writeln('We have a fruit with class ', Fruit.ClassName);
 Writeln('We eat it:');
 Fruit.Eat;
end;

var
 Apple: TApple; // Note: you could as well declare "Apple: TFruit" here
begin
 Apple := TApple.Create;
 try

35

Modern Object Pascal Introduction for Programmers

 DoSomethingWithAFruit(Apple);
 finally FreeAndNil(Apple) end;
end.

This example will print

We have a fruit with class TApple
We eat it:
Eating a fruit

In effect, the call Fruit.Eat called the TFruit.Eat implementation, and nothing

calls the TApple.Eat implementation.

If you think about how the compiler works, this is natural: when you wrote the

Fruit.Eat , the Fruit variable was declared to hold a class TFruit . So the

compiler was searching for the method called Eat within the TFruit class. If the

TFruit class would not contain such method, the compiler would search within an

ancestor (TObject in this case). But the compiler cannot search within descendants

(like TApple), as it doesn’t know whether the actual class of Fruit is TApple ,

TFruit , or some other TFruit descendant (like a TOrange , not shown in the

example above).

In other words, the method to be called is determined at compile-time.

Using the virtual methods changes this behavior. If the Eat method would be virtual

(an example of it is shown below), then the actual implementation to be called is

determined at runtime. If the Fruit variable will hold an instance of the class TApple
(even if it’s declared as TFruit), then the Eat method will be searched within the

TApple class first.

In Object Pascal, to define a method as virtual, you need to

• Mark its first definition (in the top-most ancestor) with the virtual keyword.

• Mark all the other definitions (in the descendants) with the override keyword.

All the overridden versions must have exactly the same parameters (and return the

same types, in case of functions).

{$mode objfpc}{$H+}{$J-}
uses SysUtils;

36

Modern Object Pascal Introduction for Programmers

type
 TFruit = class
 procedure Eat; virtual;
 end;

 TApple = class(TFruit)
 procedure Eat; override;
 end;

procedure TFruit.Eat;
begin
 Writeln('Eating a fruit');
end;

procedure TApple.Eat;
begin
 Writeln('Eating an apple');
end;

procedure DoSomethingWithAFruit(const Fruit: TFruit);
begin
 Writeln('We have a fruit with class ', Fruit.ClassName);
 Writeln('We eat it:');
 Fruit.Eat;
end;

var
 Apple: TApple; // Note: you could as well declare "Apple: TFruit" here
begin
 Apple := TApple.Create;
 try
 DoSomethingWithAFruit(Apple);
 finally FreeAndNil(Apple) end;
end.

This example will print

We have a fruit with class TApple
We eat it:
Eating an apple

Internally, virtual methods work by having so-called virtual method table associated

with each class. This table is a list of pointers to the implementations of virtual methods

for this class. When calling the Eat method, the compiler looks into a virtual method

37

Modern Object Pascal Introduction for Programmers

table associated with the actual class of Fruit , and uses a pointer to the Eat
implementation stored there.

If you don’t use the override keyword, the compiler will warn you that you’re hiding

(obscuring) the virtual method of an ancestor with a non-virtual definition. If you’re sure

that this is what you want, you can add a reintroduce keyword. But in most cases,

you will rather want to keep the method virtual, and add the override keyword, thus

making sure that it’s always invoked correctly.

5. Freeing classes

5.1. Remember to free the class instances

The class instances have to be manually freed, otherwise you get memory leaks.

I advise using FPC -gl -gh options to detect memory leaks (see https://castle-

engine.io/manual_optimization.php#section_memory).

Note that this doesn’t concern raised exceptions. Although you do create a class when

raising an exception (and it’s a perfectly normal class, and you can create your own

classes for this purpose too). But this class instance is freed automatically.

5.2. How to free

To free the class instance, it’s best to call FreeAndNil(A) from SysUtils unit on

your class instance. It checks whether A is nil , if not — calls its destructor, and sets

A to nil . So calling it many times in a row is not an error.

It is more-or-less a shortcut for

if A <> nil then
begin
 A.Destroy;
 A := nil;
end;

Actually, that’s an oversimplification, as FreeAndNil does a useful trick and sets the

variable A to nil before calling the destructor on a suitable reference. This helps

to prevent a certain class of bugs — the idea is that the "outside" code should never

access a half-destructed instance of the class.

Often you will also see people using the A.Free method, which is like doing

38

https://castle-engine.io/manual_optimization.php#section_memory
https://castle-engine.io/manual_optimization.php#section_memory

Modern Object Pascal Introduction for Programmers

if A <> nil then
 A.Destroy;

This frees the A , unless it’s nil .

Note that in normal circumstances, you should never call a method on an instance

which may be nil . So the call A.Free may look suspicious at the first sight, if A can

be nil . However, the Free method is an exception to this rule. It does something

dirty in the implementation — namely, checks whether Self <> nil . This dirty trick

works only in non-virtual methods (that don’t call any virtual methods and don’t access

any fields).

I advise using FreeAndNil(A) always, without exceptions, and never to call directly

the Free method or Destroy destructor. The Castle Game Engine does it like that.

It helps to keep a nice assertion that all references are either nil, or point to valid

instances.

5.3. Manual and automatic freeing

In many situations, the need to free the instance is not much problem. You just write a

destructor, that matches a constructor, and deallocates everything that was allocated

in the constructor (or, more completely, in the whole lifetime of the class). Be careful to

only free each thing once. Usually it’s a good idea to set the freed reference to nil ,

usually it’s most comfortable to do it by calling the FreeAndNil(A) .

So, like this:

uses SysUtils;

type
 TGun = class
 end;

 TPlayer = class
 Gun1, Gun2: TGun;
 constructor Create;
 destructor Destroy; override;
 end;

constructor TPlayer.Create;
begin
 inherited;

39

Modern Object Pascal Introduction for Programmers

 Gun1 := TGun.Create;
 Gun2 := TGun.Create;
end;

destructor TPlayer.Destroy;
begin
 FreeAndNil(Gun1);
 FreeAndNil(Gun2);
 inherited;
end;

To avoid the need to explicitly free the instance, one can also use the TComponent
feature of "ownership". An object that is owned will be automatically freed by the owner.

The mechanism is smart and it will never free an already freed instance (so things will

also work correctly if you manually free the owned object earlier). We can change the

previous example to this:

uses SysUtils, Classes;

type
 TGun = class(TComponent)
 end;

 TPlayer = class(TComponent)
 Gun1, Gun2: TGun;
 constructor Create(AOwner: TComponent); override;
 end;

constructor TPlayer.Create(AOwner: TComponent);
begin
 inherited;
 Gun1 := TGun.Create(Self);
 Gun2 := TGun.Create(Self);
end;

Note that we need to override a virtual TComponent constructor here. So we cannot

change the constructor parameters. (Actually, you can — declare a new constructor

with reintroduce . But be careful, as some functionality, e.g. streaming, will still use

the virtual constructor, so make sure it works right in either case.)

Note that you can always use nil value for the owner. This way the "ownership"

mechanism will not be used for this component. It makes sense if you need to

use the TComponent descendant, but you want to always manually free it. To

40

Modern Object Pascal Introduction for Programmers

do this, you would create a component descendant like this: ManualGun :=
TGun.Create(nil); .

Another mechanism for automatic freeing is the OwnsObjects functionality (by

default already true !) of list-classes like TFPGObjectList or TObjectList . So

we can also write:

uses SysUtils, Classes, FGL;

type
 TGun = class
 end;

 TGunList = specialize TFPGObjectList<TGun>;

 TPlayer = class
 Guns: TGunList;
 Gun1, Gun2: TGun;
 constructor Create;
 destructor Destroy; override;
 end;

constructor TPlayer.Create;
begin
 inherited;
 // Actually, the parameter true (OwnsObjects) is already the default
 Guns := TGunList.Create(true);
 Gun1 := TGun.Create;
 Guns.Add(Gun1);
 Gun2 := TGun.Create;
 Guns.Add(Gun2);
end;

destructor TPlayer.Destroy;
begin
 { We have to take care to free the list.
 It will automatically free its contents. }
 FreeAndNil(Guns);

 { No need to free the Gun1, Gun2 anymore. It's a nice habit to set to
 "nil"
 their references now, as we know they are freed. In this simple class,
 with so simple destructor, it's obvious that they cannot be accessed
 anymore -- but doing this pays off in case of larger and more
 complicated

41

Modern Object Pascal Introduction for Programmers

 destructors.

 Alternatively, we could avoid declaring Gun1 and Gun2,
 and instead use Guns[0] and Guns[1] in own code.
 Or create a method like Gun1 that returns Guns[0]. }
 Gun1 := nil;
 Gun2 := nil;
 inherited;
end;

Beware that the list classes "ownership" mechanism is simple, and you will get an error

if you free the instance using some other means, while it’s also contained within a list.

Use the Extract method to remove something from a list without freeing it, thus

taking the responsibility to free it yourself.

In the Castle Game Engine: The descendants of TX3DNode have automatic memory

management when inserted as children of another TX3DNode . The root X3D node,

TX3DRootNode , is in turn usually owned by TCastleSceneCore . Some other

things also have a simple ownership mechanism — look for parameters and properties

called OwnsXxx .

5.4. The virtual destructor called Destroy

As you saw in the examples above, when the class is destroyed, its destructor
called Destroy is called.

In theory, you could have multiple destructors, but in practice it’s almost never a good

idea. It’s much easier to have only one destructor called Destroy , which is in turn

called by the Free method, which is in turn called by the FreeAndNil procedure.

The Destroy destructor in the TObject is defined as a virtual method, so you

should always mark it with the override keyword in all your classes (since all

classes descend from TObject). This makes the Free method work correctly.

Recall how the virtual methods work from the Section 4.9, “Virtual methods, override

and reintroduce”.

This information about destructors is, indeed, inconsistent with the

constructors.

It’s normal that a class has multiple constructors. Usually they are

all called Create , and only have different parameters, but it’s also

OK to invent other names for constructors.

42

Modern Object Pascal Introduction for Programmers

Also, the Create constructor in the TObject is not virtual, so you

do not mark it with override in the descendants.

This all gives you a bit of extra flexibility when defining constructors.

It is often not necessary to make them virtual, so by default you’re

not forced to do it.

Note, however, that this changes for TComponent descendants.

The TComponent defines a virtual constructor Create(AOwner:
TComponent) . It needs a virtual constructor in order for the

streaming system to work. When defining descendants of the

TComponent , you should override this constructor (and mark it with

the override keyword), and perform all your initialization inside it.

It is still OK to define additional constructors, but they should only act

as "helpers". The instance should always work when created using

the Create(AOwner: TComponent) constructor, otherwise it will

not be correctly constructed when streaming. The streaming is used

e.g. when saving and loading this component on a Lazarus form.

5.5. Free notification

If you copy a reference to the instance, such that you have two references to the same

memory, and then one of them is freed — the other one becomes a "dangling pointer". It

should not be accessed, as it points to a memory that is no longer allocated. Accessing

it may result in a runtime error, or garbage being returned (as the memory may be

reused for other stuff in your program).

Using the FreeAndNil to free the instance doesn’t help here. FreeAndNil sets

to nil only the reference it got — there’s no way for it to set all other references

automatically. Consider this code:

var
 Obj1, Obj2: TObject;
begin
 Obj1 := TObject.Create;
 Obj2 := Obj1;
 FreeAndNil(Obj1);

 // what happens if we access Obj1 or Obj2 here?
end;

43

Modern Object Pascal Introduction for Programmers

1. At the end of this block, the Obj1 is nil . If some code has to access it, it can

reliably use if Obj1 <> nil then … to avoid calling methods on a freed

instance, like

if Obj1 <> nil then
 WriteLn(Obj1.ClassName);

Trying to access a field of a nil instance results in a predictable exception at

runtime. So even if some code will not check Obj1 <> nil , and will blindly access

Obj1 field, you will get a clear exception at runtime.

Same goes for calling a virtual method, or calling a non-virtual method that

accessed a field of a nil instance.

2. With Obj2 , things are less predictable. It’s not nil , but it’s invalid. Trying

to access a field of a non-nil invalid instance results in an unpredictable

behavior — maybe an access violation exception, maybe a garbage data returned.

There are various solutions to it:

• One solution is to, well, be careful and read the documentation. Don’t assume

anything about the lifetime of the reference, if it’s created by other code. If a class

TCar has a field pointing to some instance of TWheel , it’s a convention that the

reference to wheel is valid as long as the reference to car exists, and the car will

free its wheels inside its destructor. But that’s just a convention, the documentation

should mention if there’s something more complicated going on.

• In the above example, right after freeing the Obj1 instance, you can simply set the

Obj2 variable explicitly to nil . That’s trivial in this simple case.

• The most future-proof solution is to use TComponent class "free notification"

mechanism. One component can be notified when another component is freed, and

thus set its reference to nil .

Thus you get something like a weak reference. It can cope with various usage

scenarios, for example you can let the code from outside of the class to set your

reference, and the outside code can also free the instance at anytime.

This requires both classes to descend from TComponent . Using it in general

boils down to calling FreeNotification , RemoveFreeNotification , and

overriding Notification .

44

Modern Object Pascal Introduction for Programmers

Here’s a complete example, showing how to use this mechanism, together with

constructor / destructor and a setter property. Sometimes it can be done simpler,

but this is the full-blown version that is always correct:)

type
 TControl = class(TComponent)
 end;

 TContainer = class(TComponent)
 private
 FSomeSpecialControl: TControl;
 procedure SetSomeSpecialControl(const Value: TControl);
 protected
 procedure Notification(AComponent: TComponent; Operation:
 TOperation); override;
 public
 destructor Destroy; override;
 property SomeSpecialControl: TControl
 read FSomeSpecialControl write SetSomeSpecialControl;
 end;

implementation

procedure TContainer.Notification(AComponent: TComponent; Operation:
 TOperation);
begin
 inherited;
 if (Operation = opRemove) and (AComponent = FSomeSpecialControl) then
 { set to nil by SetSomeSpecialControl to clean nicely }
 SomeSpecialControl := nil;
end;

procedure TContainer.SetSomeSpecialControl(const Value: TControl);
begin
 if FSomeSpecialControl <> Value then
 begin
 if FSomeSpecialControl <> nil then
 FSomeSpecialControl.RemoveFreeNotification(Self);
 FSomeSpecialControl := Value;
 if FSomeSpecialControl <> nil then
 FSomeSpecialControl.FreeNotification(Self);
 end;
end;

45

Modern Object Pascal Introduction for Programmers

destructor TContainer.Destroy;
begin
 { set to nil by SetSomeSpecialControl, to detach free notification }
 SomeSpecialControl := nil;
 inherited;
end;

5.6. Free notification observer (Castle Game Engine)

In Castle Game Engine we encourage to use TFreeNotificationObserver
from CastleClassUtils unit instead of directly calling FreeNotification ,

RemoveFreeNotification and overriding Notification .

In general using TFreeNotificationObserver looks a bit simpler than using

FreeNotification mechanism directly (though I admit it is a matter of taste). But

in particular when the same class instance must be observed because of multiple

reasons then TFreeNotificationObserver is much simpler to use (directly using

FreeNotification in this case can get complicated, as you have to watch to not

unregister the notification too soon).

This is the example code using TFreeNotificationObserver , to achieve the

same effect as example in the previous section:

type
 TControl = class(TComponent)
 end;

 TContainer = class(TComponent)
 private
 FSomeSpecialControlObserver: TFreeNotificationObserver;
 FSomeSpecialControl: TControl;
 procedure SetSomeSpecialControl(const Value: TControl);
 procedure SomeSpecialControlFreeNotification(const Sender:
 TFreeNotificationObserver);
 public
 constructor Create(AOwner: TComponent); override;
 property SomeSpecialControl: TControl
 read FSomeSpecialControl write SetSomeSpecialControl;
 end;

implementation

46

Modern Object Pascal Introduction for Programmers

uses CastleComponentSerialize;

constructor TContainer.Create(AOwner: TComponent);
begin
 inherited;
 FSomeSpecialControlObserver := TFreeNotificationObserver.Create(Self);
 FSomeSpecialControlObserver.OnFreeNotification := {$ifdef FPC}@{$endif}
 SomeSpecialControlFreeNotification;
end;

procedure TContainer.SetSomeSpecialControl(const Value: TControl);
begin
 if FSomeSpecialControl <> Value then
 begin
 FSomeSpecialControl := Value;
 FSomeSpecialControlObserver.Observed := Value;
 end;
end;

procedure TContainer.SomeSpecialControlFreeNotification(const Sender:
 TFreeNotificationObserver);
begin
 // set property to nil when the referenced component is freed
 SomeSpecialControl := nil;
end;

See https://castle-engine.io/custom_components .

6. Exceptions

6.1. Overview

Exceptions allow to interrupt the normal execution of the code.

• At any point within the program, you can raise an exception using the raise
keyword. In effect the lines of code following the raise … call will not execute.

• An exception may be caught using a try … except … end construction.

Catching an exception means that you somehow "deal" with exception, and the

following code should execute as usual, the exception is no longer propagated

upward.

Note: If an exception is raised but never caught, it will cause the entire application

to stop with an error.

47

https://castle-engine.io/custom_components

Modern Object Pascal Introduction for Programmers

But in LCL applications, the exceptions are always caught around events (and

cause LCL dialog box) if you don’t catch them earlier.

In Castle Game Engine applications using CastleWindow , we similarly always

catch exceptions around your events (and display proper dialog box).

So it is not so easy to make an exception that is not caught anywhere (not caught

in your code, LCL code, CGE code…).

• Although an exception breaks the execution, you can use the try … finally …
 end construction to execute some code always, even if the code was interrupted

by an exception.

The try … finally … end construction also works when code is interrupted

by Break or Continue or Exit keywords. The point is to always execute code

in the finally section.

An "exception" is, in general, any class instance.

• The compiler does not enforce any particular class. You just must call raise XXX
where XXX is an instance of any class. Any class (so, anything descending from

TObject) is fine.

• It is a standard convention for exception classes to descend from a special

Exception class. The Exception class extends TObject , adding a string

Message property and a constructor to easily set this property. All exceptions

raised by the standard library descend from Exception . We advise to follow this

convention.

• Exception classes (by convention) have names that start with E , not T . Like

ESomethingBadHappened .

• The compiler will automatically free exception object when it is handled. Don’t free

it yourself.

In most cases, you just construct the object at the same time when you call raise ,

like raise ESomethingBadHappened.Create('Description of what
bad thing happened.') .

6.2. Raising

If you want to raise your own exception, declare it and call raise … when appropriate:

type

48

Modern Object Pascal Introduction for Programmers

 EInvalidParameter = class(Exception);

function ReadParameter: String;
begin
 Result := Readln;
 if Pos(' ', Result) <> 0 then
 raise EInvalidParameter.Create('Invalid parameter, space is not
 allowed');
end;

Note that the expression following the raise should be a valid class instance to raise.

You will almost always create the exception instance here.

You can also use the CreateFmt constructor, which is a comfortable shortcut to

Create(Format(MessageFormat, MessageArguments)) . This is a common

way to provide more information to the exception message. We can improve the

previous example like this:

type
 EInvalidParameter = class(Exception);

function ReadParameter: String;
begin
 Result := Readln;
 if Pos(' ', Result) <> 0 then
 raise EInvalidParameter.CreateFmt('Invalid parameter %s, space is not
 allowed', [Result]);
end;

6.3. Catching

You can catch an exception like this:

var
 Parameter1, Parameter2, Parameter3: String;
begin
 try
 Writeln('Input 1st parameter:');
 Parameter1 := ReadParameter;
 Writeln('Input 2nd parameter:');
 Parameter2 := ReadParameter;
 Writeln('Input 3rd parameter:');

49

Modern Object Pascal Introduction for Programmers

 Parameter3 := ReadParameter;
 except
 // capture EInvalidParameter raised by one of the above ReadParameter
 calls
 on EInvalidParameter do
 Writeln('EInvalidParameter exception occurred');
 end;
end;

To improve the above example, we can declare the name for the exception instance

(we will use E in the example). This way we can print the exception message:

try
...
except
 on E: EInvalidParameter do
 Writeln('EInvalidParameter exception occurred with message: ' +
 E.Message);
end;

One could also test for multiple exception classes:

try
...
except
 on E: EInvalidParameter do
 Writeln('EInvalidParameter exception occurred with message: ' +
 E.Message);
 on E: ESomeOtherException do
 Writeln('ESomeOtherException exception occurred with message: ' +
 E.Message);
end;

You can also react to any exception raised, if you don’t use any on expression:

try
...
except
 Writeln('Warning: Some exception occurred');
end;
// WARNING: DO NOT FOLLOW THIS EXAMPLE WITHOUT READING A WARNING BELOW
// ABOUT "CAPTURING ALL EXCEPTIONS"

50

Modern Object Pascal Introduction for Programmers

In general you should only catch exceptions of a specific class, that signal a particular

problem that you know what to do with. Be careful with catching exceptions of a general

type (like catching any Exception or any TObject), as you may easily catch too

much, and later cause troubles when debugging other problems. As in all programming

languages with exceptions, the good rule to follow is to never capture an exception that

you do not know how to handle. In particular, do not capture an exception just as a

simple workaround of the problem, without investigating first why the exception occurs.

• Does the exception indicate a problem in user input? Then you should report it to

user.

• Does the exception indicate a bug in your code? Then you should fix the code, to

avoid the exception from happening at all.

Another way to capture all exceptions is to use:

try
...
except
 on E: TObject do
 Writeln('Warning: Some exception occurred');
end;
// WARNING: DO NOT FOLLOW THIS EXAMPLE WITHOUT READING A WARNING ABOVE
// ABOUT "CAPTURING ALL EXCEPTIONS"

Although usually it is enough to capture Exception :

try
...
except
 on E: Exception do
 Writeln('Warning: Some exception occurred: ' + E.ClassName + ',
 message: ' + E.Message);
end;
// WARNING: DO NOT FOLLOW THIS EXAMPLE WITHOUT READING A WARNING ABOVE
// ABOUT "CAPTURING ALL EXCEPTIONS"

You can "re-raise" the exception in the except … end block, if you decide so. You

can just do raise E if the exception instance is E , you can also just use parameter-

less raise . For example:

try

51

Modern Object Pascal Introduction for Programmers

...
except
 on E: EInvalidSoundFile do
 begin
 if E.InvalidUrl = 'http://example.com/blablah.wav' then
 Writeln('Warning: loading http://example.com/blablah.wav failed,
 ignore it')
 else
 raise;
 end;
end;

Note that, although the exception is an instance of an object, you should never manually

free it after raising. The compiler will generate proper code that makes sure to free the

exception object once it’s handled.

6.4. Finally (doing things regardless if an exception occurred)

Often you use try .. finally .. end construction to free an instance of some

object, regardless if an exception occurred when using this object. The way to write

it looks like this:

procedure MyProcedure;
var
 MyInstance: TMyClass;
begin
 MyInstance := TMyClass.Create;
 try
 MyInstance.DoSomething;
 MyInstance.DoSomethingElse;
 finally
 FreeAndNil(MyInstance);
 end;
end;

This works reliably always, and does not cause memory leaks, even if

MyInstance.DoSomething or MyInstance.DoSomethingElse raise an

exception.

Note that this takes into account that local variables, like MyInstance above, have

undefined values (may contain random "memory garbage") before the first assignment.

That is, writing something like this would not be valid:

52

Modern Object Pascal Introduction for Programmers

// INCORRECT EXAMPLE:
procedure MyProcedure;
var
 MyInstance: TMyClass;
begin
 try
 CallSomeOtherProcedure;
 MyInstance := TMyClass.Create;
 MyInstance.DoSomething;
 MyInstance.DoSomethingElse;
 finally
 FreeAndNil(MyInstance);
 end;
end;

The above example is not valid: if an exception occurs within

TMyClass.Create (a constructor may also raise an exception), or within the

CallSomeOtherProcedure , then the MyInstance variable is not initialized.

Calling FreeAndNil(MyInstance) will try to call destructor of MyInstance ,

which will most likely crash with Access Violation (Segmentation Fault). In effect, one

exception causes another exception, which will make the error report not very useful:

you will not see the message of the original exception.

Sometimes it is justified to fix the above code by first initializing all local variables to

nil (on which calling FreeAndNil is safe, and will not do anything). This makes

sense if you free a lot of class instances. So the two code examples below work equally

well:

procedure MyProcedure;
var
 MyInstance1: TMyClass1;
 MyInstance2: TMyClass2;
 MyInstance3: TMyClass3;
begin
 MyInstance1 := TMyClass1.Create;
 try
 MyInstance1.DoSomething;

 MyInstance2 := TMyClass2.Create;
 try
 MyInstance2.DoSomethingElse;

 MyInstance3 := TMyClass3.Create;

53

Modern Object Pascal Introduction for Programmers

 try
 MyInstance3.DoYetAnotherThing;
 finally
 FreeAndNil(MyInstance3);
 end;
 finally
 FreeAndNil(MyInstance2);
 end;
 finally
 FreeAndNil(MyInstance1);
 end;
end;

It is probably more readable in the form below:

procedure MyProcedure;
var
 MyInstance1: TMyClass1;
 MyInstance2: TMyClass2;
 MyInstance3: TMyClass3;
begin
 MyInstance1 := nil;
 MyInstance2 := nil;
 MyInstance3 := nil;
 try
 MyInstance1 := TMyClass1.Create;
 MyInstance1.DoSomething;

 MyInstance2 := TMyClass2.Create;
 MyInstance2.DoSomethingElse;

 MyInstance3 := TMyClass3.Create;
 MyInstance3.DoYetAnotherThing;
 finally
 FreeAndNil(MyInstance3);
 FreeAndNil(MyInstance2);
 FreeAndNil(MyInstance1);
 end;
end;

In this simple example, you could also make a valid argument that

the code should be split into 3 separate procedures, one calling each

other.

54

Modern Object Pascal Introduction for Programmers

6.5. How the exceptions are displayed by various libraries

• In case of Lazarus LCL, the exceptions raised during events (various

callbacks assigned to OnXxx properties of LCL components) will be

captured and will result in a nice dialog message, that allows the user

to continue and stop the application. This means that your own exceptions

do not "get out" from Application.ProcessMessages , so they do not

automatically break the application. You can configure what happens using

TApplicationProperties.OnException .

• Similarly in case of Castle Game Engine with CastleWindow : the exception is

internally captured and results in nice error message. So exceptions do not "get out"

from Application.ProcessMessages . Again, you can configure what happens

using Application.OnException .

• Some other GUI libraries may do a similar thing to above.

• In case of other applications, you can configure how the exception is displayed by

assigning a global callback to OnHaltProgram .

7. Run-time library

7.1. Input/output using streams

Modern programs should use TStream class and its many descendants to do input /

output. It has many useful descendants, like TFileStream , TMemoryStream ,

TStringStream .

{$mode objfpc}{$H+}{$J-}
uses
 SysUtils, Classes;

var
 S: TStream;
 InputInt, OutputInt: Integer;
begin
 InputInt := 666;

 S := TFileStream.Create('my_binary_file.data', fmCreate);
 try
 S.WriteBuffer(InputInt, SizeOf(InputInt));
 finally
 FreeAndNil(S);
 end;

55

Modern Object Pascal Introduction for Programmers

 S := TFileStream.Create('my_binary_file.data', fmOpenRead);
 try
 S.ReadBuffer(OutputInt, SizeOf(OutputInt));
 finally
 FreeAndNil(S);
 end;

 WriteLn('Read from file got integer: ', OutputInt);
end.

In the Castle Game Engine: You should use the Download function to create a

stream that obtains data from any URL. Regular files, HTTP and HTTPS resources,

Android assets and more are supported this way. Moreover, to open the resource inside

your game data (in the data subdirectory) use the special castle-data:/xxx
URL. Examples:

EnableNetwork := true;
S := Download('https://castle-engine.io/latest.zip');

S := Download('file:///home/michalis/my_binary_file.data');

S := Download('castle-data:/gui/my_image.png');

To read text files, we advise using the TTextReader class. It provides a line-oriented

API, and wraps a TStream inside. The TTextReader constructor can take a ready

URL, or you can pass there your custom TStream source.

Text := TTextReader.Create('castle-data:/my_data.txt');
try
 while not Text.Eof do
 WriteLnLog('NextLine', Text.ReadLn);
finally
 FreeAndNil(Text);
end;

7.2. Containers (lists, dictionaries) using generics

The language and run-time library offer various flexible containers. There are a number

of non-generic classes (like TList and TObjectList from the Contnrs unit),

56

Modern Object Pascal Introduction for Programmers

there are also dynamic arrays (array of TMyType). But to get the most flexibility

and type-safety, I advise using generic containers for most of your needs.

The generic containers give you a lot of helpful methods to add, remove, iterate, search,

sort… The compiler also knows (and checks) that the container holds only items of the

appropriate type.

There are three libraries providing generics containers in FPC now:

• Generics.Collections unit and friends (since FPC >= 3.2.0)

• FGL unit

• GVector unit and friends (together in fcl-stl)

We advise using the Generics.Collections unit. The generic containers it

implements are

• packed with useful features,

• very efficient (in particular important for accessing dictionaries by keys),

• compatible between FPC and Delphi,

• the naming is consistent with other parts of the standard library (like the non-generic

containers from the Contnrs unit).

In the Castle Game Engine: We use the Generics.Collections intensively

throughout the engine, and advise you to use Generics.Collections in your

applications too!

Most important classes from the Generics.Collections unit are:

TList

A generic list of types.

TObjectList

A generic list of object instances. It can "own" children, which means that it will free

them automatically.

TDictionary

A generic dictionary.

TObjectDictionary

A generic dictionary, that can "own" the keys and/or values.

Here’s how to you use a simple generic TObjectList :

{$mode objfpc}{$H+}{$J-}

57

Modern Object Pascal Introduction for Programmers

uses SysUtils, Generics.Collections;

type
 TApple = class
 Name: string;
 end;

 TAppleList = specialize TObjectList<TApple>;

var
 A: TApple;
 Apples: TAppleList;
begin
 Apples := TAppleList.Create(true);
 try
 A := TApple.Create;
 A.Name := 'my apple';
 Apples.Add(A);

 A := TApple.Create;
 A.Name := 'another apple';
 Apples.Add(A);

 Writeln('Count: ', Apples.Count);
 Writeln(Apples[0].Name);
 Writeln(Apples[1].Name);
 finally FreeAndNil(Apples) end;
end.

Note that some operations require comparing two items, like sorting and searching (e.g.

by Sort and IndexOf methods). The Generics.Collections containers use

for this a comparer. The default comparer is reasonable for all types, even for records

(in which case it compares memory contents, which is a reasonable default at least for

searching using IndexOf).

When sorting the list you can provide a custom comparer as a parameter. The comparer

is a class implementing the IComparer interface. In practice, you usually define

the appropriate callback, and use TComparer<T>.Construct method to wrap this

callback into an IComparer instance. An example of doing this is below:

{$mode objfpc}{$H+}{$J-}
uses SysUtils, Generics.Defaults, Generics.Collections;

type

58

Modern Object Pascal Introduction for Programmers

 TApple = class
 Name: string;
 end;

 TAppleList = specialize TObjectList<TApple>;

function CompareApples(constref Left, Right: TApple): Integer;
begin
 Result := AnsiCompareStr(Left.Name, Right.Name);
end;

type
 TAppleComparer = specialize TComparer<TApple>;
var
 A: TApple;
 L: TAppleList;
begin
 L := TAppleList.Create(true);
 try
 A := TApple.Create;
 A.Name := '11';
 L.Add(A);

 A := TApple.Create;
 A.Name := '33';
 L.Add(A);

 A := TApple.Create;
 A.Name := '22';
 L.Add(A);

 L.Sort(TAppleComparer.Construct(@CompareApples));

 Writeln('Count: ', L.Count);
 Writeln(L[0].Name);
 Writeln(L[1].Name);
 Writeln(L[2].Name);
 finally FreeAndNil(L) end;
end.

The TDictionary class implements a dictionary, also known as a map (key

→ value), also known as an associative array. Its API is a bit similar to the C#

TDictionary class. It has useful iterators for keys, values, and pairs of key#value.

An example code using a dictionary:

59

Modern Object Pascal Introduction for Programmers

{$mode objfpc}{$H+}{$J-}
uses SysUtils, Generics.Collections;

type
 TApple = class
 Name: string;
 end;

 TAppleDictionary = specialize TDictionary<string, TApple>;

var
 Apples: TAppleDictionary;
 A, FoundA: TApple;
 ApplePair: TAppleDictionary.TDictionaryPair;
 AppleKey: string;
begin
 Apples := TAppleDictionary.Create;
 try
 A := TApple.Create;
 A.Name := 'my apple';
 Apples.AddOrSetValue('apple key 1', A);

 if Apples.TryGetValue('apple key 1', FoundA) then
 Writeln('Found apple under key "apple key 1" with name: ' +
 FoundA.Name);

 for AppleKey in Apples.Keys do
 Writeln('Found apple key: ' + AppleKey);
 for A in Apples.Values do
 Writeln('Found apple value: ' + A.Name);
 for ApplePair in Apples do
 Writeln('Found apple key->value: ' +
 ApplePair.Key + '->' + ApplePair.Value.Name);

 { Line below works too, but it can only be used to set
 an *existing* dictionary key.
 Instead of this, usually use AddOrSetValue
 to set or add a new key, as necessary. }
 // Apples['apple key 1'] := ... ;

 Apples.Remove('apple key 1');

 { Note that the TDictionary doesn't own the items,
 you need to free them yourself.
 We could use TObjectDictionary to have automatic ownership

60

Modern Object Pascal Introduction for Programmers

 mechanism. }
 A.Free;
 finally FreeAndNil(Apples) end;
end.

The TObjectDictionary can additionally own the dictionary keys and/or values,

which means that they will be automatically freed. Be careful to only own keys and/

or values if they are object instances. If you set to "owned" some other type, like an

Integer (for example, if your keys are Integer , and you include doOwnsKeys),

you will get a nasty crash when the code executes.

An example code using the TObjectDictionary is below. Compile

this example with memory leak detection, like fpc -gl -gh
generics_object_dictionary.lpr , to see that everything is freed when

program exits.

{$mode objfpc}{$H+}{$J-}
uses SysUtils, Generics.Collections;

type
 TApple = class
 Name: string;
 end;

 TAppleDictionary = specialize TObjectDictionary<string, TApple>;

var
 Apples: TAppleDictionary;
 A: TApple;
 ApplePair: TAppleDictionary.TDictionaryPair;
begin
 Apples := TAppleDictionary.Create([doOwnsValues]);
 try
 A := TApple.Create;
 A.Name := 'my apple';
 Apples.AddOrSetValue('apple key 1', A);

 for ApplePair in Apples do
 Writeln('Found apple key->value: ' +
 ApplePair.Key + '->' + ApplePair.Value.Name);

 Apples.Remove('apple key 1');
 finally FreeAndNil(Apples) end;

61

Modern Object Pascal Introduction for Programmers

end.

If you prefer using the FGL unit instead of Generics.Collections , the most

important classes from the FGL unit are:

TFPGList

A generic list of types.

TFPGObjectList

A generic list of object instances. It can "own" children.

TFPGMap

A generic dictionary.

In FGL unit, the TFPGList can be only used for types for which the equality operator

(=) is defined. For TFPGMap the "greater than" (>) and "less than" (<) operators must

be defined for the key type. If you want to use these lists with types that don’t have

built-in comparison operators (e.g. with records), you have to overload their operators

as shown in the Section 8.9, “Operator overloading”.

In the Castle Game Engine we include a unit CastleGenericLists that adds

TGenericStructList and TGenericStructMap classes. They are similar

to TFPGList and TFPGMap , but they do not require a definition of the

comparison operators for the appropriate type (instead, they compare memory

contents, which is often appropriate for records or method pointers). But the

CastleGenericLists unit is deprecated since the engine version 6.3, as we advise

using Generics.Collections instead.

If you want to know more about the generics, see Section 8.3, “Generics”.

7.3. Cloning: TPersistent.Assign

Copying the class instances by a simple assignment operator copies the reference.

var
 X, Y: TMyObject;
begin
 X := TMyObject.Create;
 Y := X;
 // X and Y are now two pointers to the same data
 Y.MyField := 123; // this also changes X.MyField
 FreeAndNil(X);
end;

62

Modern Object Pascal Introduction for Programmers

To copy the class instance contents, the standard approach is to derive your

class from TPersistent , and override its Assign method. Once it’s implemented

properly in TMyObject , you use it like this:

var
 X, Y: TMyObject;
begin
 X := TMyObject.Create;
 Y := TMyObject.Create;
 Y.Assign(X);
 Y.MyField := 123; // this does not change X.MyField
 FreeAndNil(X);
 FreeAndNil(Y);
end;

To make it work, you need to implement the Assign method to actually copy the fields

you want. You should carefully implement the Assign method, to copy from a class

that may be a descendant of the current class.

{$mode objfpc}{$H+}{$J-}
uses
 SysUtils, Classes;

type
 TMyClass = class(TPersistent)
 public
 MyInt: Integer;
 procedure Assign(Source: TPersistent); override;
 end;

 TMyClassDescendant = class(TMyClass)
 public
 MyString: string;
 procedure Assign(Source: TPersistent); override;
 end;

procedure TMyClass.Assign(Source: TPersistent);
var
 SourceMyClass: TMyClass;
begin
 if Source is TMyClass then
 begin
 SourceMyClass := TMyClass(Source);

63

Modern Object Pascal Introduction for Programmers

 MyInt := SourceMyClass.MyInt;
 // Xxx := SourceMyClass.Xxx; // add new fields here
 end else
 { Since TMyClass is a direct TPersistent descendant,
 it calls inherited ONLY when it cannot handle Source class.
 See comments below. }
 inherited Assign(Source);
end;

procedure TMyClassDescendant.Assign(Source: TPersistent);
var
 SourceMyClassDescendant: TMyClassDescendant;
begin
 if Source is TMyClassDescendant then
 begin
 SourceMyClassDescendant := TMyClassDescendant(Source);
 MyString := SourceMyClassDescendant.MyString;
 // Xxx := SourceMyClassDescendant.Xxx; // add new fields here
 end;

 { Since TMyClassDescendant has an ancestor that already overrides
 Assign (in TMyClass.Assign), it calls inherited ALWAYS,
 to allow TMyClass.Assign to handle remaining fields.
 See comments below for a detailed reasoning. }
 inherited Assign(Source);
end;

var
 C1, C2: TMyClass;
 CD1, CD2: TMyClassDescendant;
begin
 // test TMyClass.Assign
 C1 := TMyClass.Create;
 C2 := TMyClass.Create;
 try
 C1.MyInt := 666;
 C2.Assign(C1);
 WriteLn('C2 state: ', C2.MyInt);
 finally
 FreeAndNil(C1);
 FreeAndNil(C2);
 end;

 // test TMyClassDescendant.Assign
 CD1 := TMyClassDescendant.Create;

64

Modern Object Pascal Introduction for Programmers

 CD2 := TMyClassDescendant.Create;
 try
 CD1.MyInt := 44;
 CD1.MyString := 'blah';
 CD2.Assign(CD1);
 WriteLn('CD2 state: ', CD2.MyInt, ' ', CD2.MyString);
 finally
 FreeAndNil(CD1);
 FreeAndNil(CD2);
 end;
end.

Sometimes it’s more comfortable to alternatively override the AssignTo method in

the source class, instead of overriding the Assign method in the destination class.

Be careful when you call inherited in the overridden Assign implementation.

There are two situations:

Your class is a direct descendant of the TPersistent class. (Or, it’s not a direct

descendant of TPersistent , but no ancestor has overridden the Assign
method.)

In this case, your class should use the inherited keyword (to call the

TPersistent.Assign) only if you cannot handle the assignment in your code.

Your class descends from some class that has already overridden the Assign
method.

In this case, your class should always use the inherited keyword (to call

the ancestor Assign). In general, calling inherited in overridden methods is

usually a good idea.

To understand the reason behind the above rule (when you should call, and when

you should not call inherited from the Assign implementation), and how it

relates to the AssignTo method, let’s look at the TPersistent.Assign and

TPersistent.AssignTo implementations:

procedure TPersistent.Assign(Source: TPersistent);
begin
 if Source <> nil then
 Source.AssignTo(Self)
 else
 raise EConvertError...
end;

65

Modern Object Pascal Introduction for Programmers

procedure TPersistent.AssignTo(Destination: TPersistent);
begin
 raise EConvertError...
end;

This is not the exact implementation of TPersistent . I copied the

FPC standard library code, but then I simplified it to hide unimportant

details about the exception message.

The conclusions you can get from the above are:

• If neither Assign nor AssignTo are overridden, then calling them will result in

an exception.

• Also, note that there is no code in TPersistent implementation that automatically

copies all the fields (or all the published fields) of the classes. That’s why you need

to do that yourself, by overriding Assign in all the classes. You can use RTTI

(runtime type information) for that, but for simple cases you will probably just list the

fields to be copied manually.

When you have a class like TApple , your TApple.Assign implementation usually

deals with copying fields that are specific to the TApple class (not to the TApple
ancestor, like TFruit). So, the TApple.Assign implementation usually checks

whether Source is TApple at the beginning, before copying apple-related fields.

Then, it calls inherited to allow TFruit to handle the rest of the fields.

Assuming that you implemented TFruit.Assign and TApple.Assign following

the standard pattern (as shown in the example above), the effect is like this:

• If you pass TApple instance to TApple.Assign , it will work and copy all the

fields.

• If you pass TOrange instance to TApple.Assign , it will work and only copy the

common fields shared by both TOrange and TApple . In other words, the fields

defined at TFruit .

• If you pass TWerewolf instance to TApple.Assign , it will raise an

exception (because TApple.Assign will call TFruit.Assign which will call

TPersistent.Assign which raises an exception).

Remember that when descending from TPersistent , the

default visibility specifier is published , to allow streaming of

TPersistent descendants. Not all field and property types are

66

Modern Object Pascal Introduction for Programmers

allowed in the published section. If you get errors related to it, and

you don’t care about streaming, just change the visibility to public .

See the Section 4.5, “Visibility specifiers”.

8. Various language features

8.1. Local (nested) routines

Inside a larger routine (function, procedure, method) you can define a helper routine.

The local routine can freely access (read and write) all the parameters of a parent, and

all the local variables of the parent that were declared above it. This is very powerful.

It often allows to split long routines into a couple of small ones without much effort (as

you don’t have to pass around all the necessary information in the parameters). Be

careful to not overuse this feature — if many nested functions use (and even change)

the same variable of the parent, the code may get hard to follow.

These two examples are equivalent:

function SumOfSquares(const N: Integer): Integer;

 function Square(const Value: Integer): Integer;
 begin
 Result := Value * Value;
 end;

var
 I: Integer;
begin
 Result := 0;
 for I := 0 to N do
 Result := Result + Square(I);
end;

Another version, where we let the local routine Square to access I directly:

function SumOfSquares(const N: Integer): Integer;
var
 I: Integer;

 function Square: Integer;
 begin

67

Modern Object Pascal Introduction for Programmers

 Result := I * I;
 end;

begin
 Result := 0;
 for I := 0 to N do
 Result := Result + Square;
end;

Local routines can go to any depth — which means that you can define a local routine

within another local routine. So you can go wild (but please don’t go too wild, or the

code will get unreadable:).

8.2. Callbacks (aka events, aka pointers to functions, aka

procedural variables)

They allow to call a function indirectly, through to a variable. The variable can be

assigned at runtime to point to any function with matching parameter types and return

types.

The callback can be:

• Normal, which means it can point to any normal routine (not a method, not local).

{$mode objfpc}{$H+}{$J-}

function Add(const A, B: Integer): Integer;
begin
 Result := A + B;
end;

function Multiply(const A, B: Integer): Integer;
begin
 Result := A * B;
end;

type
 TMyFunction = function (const A, B: Integer): Integer;

function ProcessTheList(const F: TMyFunction): Integer;
var
 I: Integer;
begin

68

Modern Object Pascal Introduction for Programmers

 Result := 1;
 for I := 2 to 10 do
 Result := F(Result, I);
end;

var
 SomeFunction: TMyFunction;
begin
 SomeFunction := @Add;
 WriteLn('1 + 2 + 3 ... + 10 = ', ProcessTheList(SomeFunction));

 SomeFunction := @Multiply;
 WriteLn('1 * 2 * 3 ... * 10 = ', ProcessTheList(SomeFunction));
end.

• A method: declare with of object at the end.

{$mode objfpc}{$H+}{$J-}
uses
 SysUtils;

type
 TMyMethod = procedure (const A: Integer) of object;

 TMyClass = class
 CurrentValue: Integer;
 procedure Add(const A: Integer);
 procedure Multiply(const A: Integer);
 procedure ProcessTheList(const M: TMyMethod);
 end;

procedure TMyClass.Add(const A: Integer);
begin
 CurrentValue := CurrentValue + A;
end;

procedure TMyClass.Multiply(const A: Integer);
begin
 CurrentValue := CurrentValue * A;
end;

procedure TMyClass.ProcessTheList(const M: TMyMethod);
var
 I: Integer;
begin

69

Modern Object Pascal Introduction for Programmers

 CurrentValue := 1;
 for I := 2 to 10 do
 M(I);
end;

var
 C: TMyClass;
begin
 C := TMyClass.Create;
 try
 C.ProcessTheList(@C.Add);
 WriteLn('1 + 2 + 3 ... + 10 = ', C.CurrentValue);

 C.ProcessTheList(@C.Multiply);
 WriteLn('1 * 2 * 3 ... * 10 = ', C.CurrentValue);
 finally
 FreeAndNil(C);
 end;
end.

Note that you cannot pass global procedures / functions as methods. They are

incompatible. If you have to provide an of object callback, but don’t want to

create a dummy class instance, you can pass Section 9.3, “Class methods” as

methods.

type
 TMyMethod = function (const A, B: Integer): Integer of object;

 TMyClass = class
 class function Add(const A, B: Integer): Integer
 class function Multiply(const A, B: Integer): Integer
 end;

var
 M: TMyMethod;
begin
 M := @TMyClass(nil).Add;
 M := @TMyClass(nil).Multiply;
end;

Unfortunately, you need to write ugly @TMyClass(nil).Add instead of just

@TMyClass.Add .

70

Modern Object Pascal Introduction for Programmers

• A (possibly) local routine: declare with is nested at the end, and make sure to

use {$modeswitch nestedprocvars} directive for the code. These go hand-

in-hand with Section 8.1, “Local (nested) routines”.

8.3. Generics

A powerful feature of any modern language. The definition of something (typically, of

a class) can be parameterized with another type. The most typical example is when

you need to create a container (a list, dictionary, tree, graph…): you can define a list

of type T, and then specialize it to instantly get a list of integers, a list of strings, a list

of TMyRecord, and so on.

The generics in Pascal work much like generics in C++. Which means that they

are "expanded" at the specialization time, a little like macros (but much safer than

macros; for example, the identifiers are resolved at the time of generic definition, not

at specialization, so you cannot "inject" any unexpected behavior when specializing

the generic). In effect this means that they are very fast (can be optimized for each

particular type) and work with types of any size. You can use a primitive type (integer,

float) as well as a record, as well as a class when specializing a generic.

{$mode objfpc}{$H+}{$J-}
uses
 SysUtils;

type
 generic TMyCalculator<T> = class
 Value: T;
 procedure Add(const A: T);
 end;

procedure TMyCalculator.Add(const A: T);
begin
 Value := Value + A;
end;

type
 TMyFloatCalculator = specialize TMyCalculator<Single>;
 TMyStringCalculator = specialize TMyCalculator<string>;

var
 FloatCalc: TMyFloatCalculator;
 StringCalc: TMyStringCalculator;
begin

71

Modern Object Pascal Introduction for Programmers

 FloatCalc := TMyFloatCalculator.Create;
 try
 FloatCalc.Add(3.14);
 FloatCalc.Add(1);
 WriteLn('FloatCalc: ', FloatCalc.Value:1:2);
 finally
 FreeAndNil(FloatCalc);
 end;

 StringCalc := TMyStringCalculator.Create;
 try
 StringCalc.Add('something');
 StringCalc.Add(' more');
 WriteLn('StringCalc: ', StringCalc.Value);
 finally
 FreeAndNil(StringCalc);
 end;
end.

Generics are not limited to classes, you can have generic functions and procedures

as well:

{$mode objfpc}{$H+}{$J-}
uses
 SysUtils;

{ Note: this example requires FPC 3.1.1 (will not compile with FPC 3.0.0
 or older). }

generic function Min<T>(const A, B: T): T;
begin
 if A < B then
 Result := A else
 Result := B;
end;

begin
 WriteLn('Min (1, 0): ', specialize Min<Integer>(1, 0));
 WriteLn('Min (3.14, 5): ', specialize Min<Single>(3.14, 5):1:2);
 WriteLn('Min (''a'', ''b''): ', specialize Min<string>('a', 'b'));
end.

See also the Section 7.2, “Containers (lists, dictionaries) using generics” about

important standard classes using generics.

72

Modern Object Pascal Introduction for Programmers

8.4. Overloading

Methods (and global functions and procedures) with the same name are allowed, as

long as they have different parameters. At compile time, the compiler detects which

one you want to use, knowing the parameters you pass.

By default, the overloading uses the FPC approach, which means that all the methods

in given namespace (a class or a unit) are equal, and hide the other methods in

namespaces with less priority. For example, if you define a class with methods

Foo(Integer) and Foo(string) , and it descends from a class with method

Foo(Float) , then the users of your new class will not be able to access the method

Foo(Float) easily (they still can --- if they typecast the class to its ancestor type).

To overcome this, use the overload keyword.

8.5. Preprocessor

You can use simple preprocessor directives for

• conditional compilation (code depending on platform, or some custom switches),

• to include one file in another,

• you can also use parameter-less macros.

Note that macros with parameters are not allowed. In general, you should avoid using

the preprocessor stuff… unless it’s really justified. The preprocessing happens before

parsing, which means that you can "break" the normal syntax of the Pascal language.

This is a powerful, but also somewhat dirty, feature.

{$mode objfpc}{$H+}{$J-}
unit PreprocessorStuff;
interface

{$ifdef FPC}
{ This is only defined when compiled by FPC, not other compilers (like
 Delphi). }
procedure Foo;
{$endif}

{ Define a NewLine constant. Here you can see how the normal syntax of
 Pascal
 is "broken" by preprocessor directives. When you compile on Unix
 (includes Linux, Android, Mac OS X), the compiler sees this:

73

Modern Object Pascal Introduction for Programmers

 const NewLine = #10;

 When you compile on Windows, the compiler sees this:

 const NewLine = #13#10;

 On other operating systems, the code will fail to compile,
 because a compiler sees this:

 const NewLine = ;

 It's a *good* thing that the compilation fails in this case -- if you
 will have to port the program to an OS that is not Unix, not Windows,
 you will be reminded by a compiler to choose the newline convention
 on that system. }

const
 NewLine =
 {$ifdef UNIX} #10 {$endif}
 {$ifdef MSWINDOWS} #13#10 {$endif} ;

{$define MY_SYMBOL}

{$ifdef MY_SYMBOL}
procedure Bar;
{$endif}

{$define CallingConventionMacro := unknown}
{$ifdef UNIX}
 {$define CallingConventionMacro := cdecl}
{$endif}
{$ifdef MSWINDOWS}
 {$define CallingConventionMacro := stdcall}
{$endif}
procedure RealProcedureName;
 CallingConventionMacro; external 'some_external_library';

implementation

{$include some_file.inc}
// $I is just a shortcut for $include
{$I some_other_file.inc}

end.

74

Modern Object Pascal Introduction for Programmers

Include files have commonly the .inc extension, and are used for two purposes:

• The include file may only contain other compiler directives, that "configure" your

source code. For example you could create a file myconfig.inc with these

contents:

{$mode objfpc}
{$H+}
{$J-}
{$modeswitch advancedrecords}
{$ifndef VER3}
 {$error This code can only be compiled using FPC version at least
 3.x.}
{$endif}

Now you can include this file using {$I myconfig.inc} in all your sources.

• The other common use is to split a large unit into many files, while still keeping

it a single unit as far as the language rules are concerned. Do not overuse this

technique — your first instinct should be to split a single unit into multiple units, not to

split a single unit into multiple include files. Never the less, this is a useful technique.

1. It allows to avoid "exploding" the number of units, while still keeping your

source code files short. For example, it may be better to have a single unit with

"commonly used UI controls" than to create one unit for each UI control class,

as the latter approach would make the typical "uses" clause long (since a typical

UI code will depend on a couple of UI classes). But placing all these UI classes

in a single myunit.pas file would make it a long file, unhandy to navigate, so

splitting it into multiple include files may make sense.

2. It allows to have a cross-platform unit interface with platform-dependent

implementation easily. Basically you can do

{$ifdef UNIX} {$I my_unix_implementation.inc} {$endif}
{$ifdef MSWINDOWS} {$I my_windows_implementation.inc} {$endif}

Sometimes this is better than writing a long code with many {$ifdef
UNIX} , {$ifdef MSWINDOWS} intermixed with normal code (variable

declarations, routine implementation). The code is more readable this way.

You can even use this technique more aggressively, by using the -
Fi command-line option of FPC to include some subdirectories only for

75

Modern Object Pascal Introduction for Programmers

specific platforms. Then you can have many version of include file {$I
my platform_specific_implementation.inc} and you simply include

them, letting the compiler find the correct version.

8.6. Records

Record is just a container for other variables. It’s like a much, much simplified class:

there is no inheritance or virtual methods. It is like a structure in C-like languages.

If you use the {$modeswitch advancedrecords} directive, records can have

methods and visibility specifiers. In general, language features that are available for

classes, and do not break the simple predictable memory layout of a record, are then

possible.

{$mode objfpc}{$H+}{$J-}
{$modeswitch advancedrecords}
type
 TMyRecord = record
 public
 I, Square: Integer;
 procedure WriteLnDescription;
 end;

procedure TMyRecord.WriteLnDescription;
begin
 WriteLn('Square of ', I, ' is ', Square);
end;

var
 A: array [0..9] of TMyRecord;
 R: TMyRecord;
 I: Integer;
begin
 for I := 0 to 9 do
 begin
 A[I].I := I;
 A[I].Square := I * I;
 end;

 for R in A do
 R.WriteLnDescription;
end.

76

Modern Object Pascal Introduction for Programmers

In modern Object Pascal, your first instinct should be to design a class , not a

record — because classes are packed with useful features, like constructors and

inheritance.

But records are still very useful when you need speed or a predictable memory layout:

• Records do not have any constructor or destructor. You just define a variable of a

record type. It has undefined contents (memory garbage) at the beginning (except

auto-managed types, like strings; they are guaranteed to be initialized to be empty,

and finalized to free the reference count). So you have to be more careful when

dealing with records, but it gives you some performance gain.

• Arrays of records are nicely linear in memory, so they are cache-friendly.

• The memory layout of records (size, padding between fields) is clearly defined

in some situations: when you request the C layout, or when you use packed
record . This is useful:

to communicate with libraries written in other programming languages, when they

expose an API based on records,

to read and write binary files,

to make dirty low-level tricks (like unsafe typecasting one type to another, being

aware of their memory representation).

• Records can also have case parts, which work like unions in C-like languages.

They allows to treat the same memory piece as a different type, depending on your

needs. As such, this allows for greater memory efficiency in some cases. And it

allows for more dirty, low-level unsafe tricks:)

8.7. Old-style objects

In the old days, Turbo Pascal introduced another syntax for class-like functionality,

using the object keyword. It’s somewhat of a blend between the concept of a

record and a modern class .

• The old-style objects can be allocated / freed, and during that operation you can

call their constructor / destructor.

• But they can also be simply declared and used, like records. A simple record or

object type is not a reference (pointer) to something, it’s simply the data. This

makes them comfortable for small data, where calling allocation / free would be

bothersome.

77

Modern Object Pascal Introduction for Programmers

• Old-style objects offer inheritance and virtual methods, although with small

differences from the modern classes. Be careful — bad things will happen if you try

to use an object without calling its constructor, and the object has virtual methods.

It’s discouraged to use the old-style objects in most cases. Modern classes provide

much more functionality. And when needed, records (including advanced records) can

be used for performance. These concepts are usually a better idea than old-style

objects.

8.8. Pointers

You can create a pointer to any other type. The pointer to type TMyRecord is declared

as ^TMyRecord , and by convention is called PMyRecord . This is a traditional

example of a linked list of integers using records:

type
 PMyRecord = ^TMyRecord;
 TMyRecord = record
 Value: Integer;
 Next: PMyRecord;
 end;

Note that the definition is recursive (type PMyRecord is defined using type

TMyRecord , while TMyRecord is defined using PMyRecord). It is allowed to define

a pointer type to a not-yet-defined type, as long as it will be resolved within the same

type block.

You can allocate and free pointers using the New / Dispose methods, or (more

low-level, not type-safe) GetMem / FreeMem methods. You dereference the pointer

(to access the stuff pointed by) you append the ^ operator (e.g. MyInteger :=
MyPointerToInteger^). To make the inverse operation, which is to get a pointer of

an existing variable, you prefix it with @ operator (e.g. MyPointerToInteger :=
@MyInteger).

There is also an untyped Pointer type, similar to void* in C-like languages. It is

completely unsafe, and can be typecasted to any other pointer type.

Remember that a class instance is also in fact a pointer, although it doesn’t require any

^ or @ operators to use it. A linked list using classes is certainly possible, it would

simply be this:

78

Modern Object Pascal Introduction for Programmers

type
 TMyClass = class
 Value: Integer;
 Next: TMyClass;
 end;

8.9. Operator overloading

You can override the meaning of many language operators, for example to allow

addition and multiplication of your custom types. Like this:

{$mode objfpc}{$H+}{$J-}
uses
 StrUtils;

operator* (const S: string; const A: Integer): string;
begin
 Result := DupeString(S, A);
end;

begin
 WriteLn('bla' * 10);
end.

You can override operators on classes too. Since you usually create new instances of

your classes inside the operator function, the caller must remember to free the result.

{$mode objfpc}{$H+}{$J-}
uses
 SysUtils;

type
 TMyClass = class
 MyInt: Integer;
 end;

operator* (const C1, C2: TMyClass): TMyClass;
begin
 Result := TMyClass.Create;
 Result.MyInt := C1.MyInt * C2.MyInt;
end;

79

Modern Object Pascal Introduction for Programmers

var
 C1, C2: TMyClass;
begin
 C1 := TMyClass.Create;
 try
 C1.MyInt := 12;
 C2 := C1 * C1;
 try
 WriteLn('12 * 12 = ', C2.MyInt);
 finally
 FreeAndNil(C2);
 end;
 finally
 FreeAndNil(C1);
 end;
end.

You can override operators on records too. This is usually easier than overloading them

for classes, as the caller doesn’t have to deal then with memory management.

{$mode objfpc}{$H+}{$J-}
uses
 SysUtils;

type
 TMyRecord = record
 MyInt: Integer;
 end;

operator* (const C1, C2: TMyRecord): TMyRecord;
begin
 Result.MyInt := C1.MyInt * C2.MyInt;
end;

var
 R1, R2: TMyRecord;
begin
 R1.MyInt := 12;
 R2 := R1 * R1;
 WriteLn('12 * 12 = ', R2.MyInt);
end.

For records, it’s advised to use {$modeswitch advancedrecords} and override

operators as class operator inside the record. This allows to use generic classes

80

Modern Object Pascal Introduction for Programmers

that depend on some operator existence (like TFPGList , that depends on equality

operator being available) with such records. Otherwise the "global" definition of an

operator (not inside the record) would not be found (because it’s not available at

the code that implements the TFPGList), and you could not specialize a list like

specialize TFPGList<TMyRecord> .

{$mode objfpc}{$H+}{$J-}
{$modeswitch advancedrecords}
uses
 SysUtils, FGL;

type
 TMyRecord = record
 MyInt: Integer;
 class operator+ (const C1, C2: TMyRecord): TMyRecord;
 class operator= (const C1, C2: TMyRecord): boolean;
 end;

class operator TMyRecord.+ (const C1, C2: TMyRecord): TMyRecord;
begin
 Result.MyInt := C1.MyInt + C2.MyInt;
end;

class operator TMyRecord.= (const C1, C2: TMyRecord): boolean;
begin
 Result := C1.MyInt = C2.MyInt;
end;

type
 TMyRecordList = specialize TFPGList<TMyRecord>;

var
 R, ListItem: TMyRecord;
 L: TMyRecordList;
begin
 L := TMyRecordList.Create;
 try
 R.MyInt := 1; L.Add(R);
 R.MyInt := 10; L.Add(R);
 R.MyInt := 100; L.Add(R);

 R.MyInt := 0;
 for ListItem in L do
 R := ListItem + R;

81

Modern Object Pascal Introduction for Programmers

 WriteLn('1 + 10 + 100 = ', R.MyInt);
 finally
 FreeAndNil(L);
 end;
end.

9. Advanced classes features

9.1. Private and strict private

The private visibility specifier means that the field (or method) is not accessible

outside of this class. But it allows an exception: all the code defined in the same unit can

break this, and access private fields and methods. A C++ programmer would say that

in Pascal all classes within a single unit are friends. This is often useful, and doesn’t

break your encapsulation, since it’s limited to a unit.

However, if you create larger units, with many classes (that are not tightly integrated

with each other), it’s safer to use strict private . It means that the field (or method)

is not accessible outside of this class — period. No exceptions.

In a similar manner, there’s protected visibility (visible to descendants, or friends in

the same unit) and strict protected (visible to descendants, period).

9.2. More stuff inside classes and nested classes

You can open a section of constants (const) or types (type) within a class. This

way, you can even define a class within a class. The visibility specifiers work as always,

in particular the nested class can be private (not visible to the outside world), which

is often useful.

Note that to declare a field after a constant or type you will need to open a var block.

type
 TMyClass = class
 private
 type
 TInternalClass = class
 Velocity: Single;
 procedure DoSomething;
 end;

82

Modern Object Pascal Introduction for Programmers

 var
 FInternalClass: TInternalClass;
 public
 const
 DefaultVelocity = 100.0;
 constructor Create;
 destructor Destroy; override;
 end;

constructor TMyClass.Create;
begin
 inherited;
 FInternalClass := TInternalClass.Create;
 FInternalClass.Velocity := DefaultVelocity;
 FInternalClass.DoSomething;
end;

destructor TMyClass.Destroy;
begin
 FreeAndNil(FInternalClass);
 inherited;
end;

{ note that method definition is prefixed with
 "TMyClass.TInternalClass" below. }
procedure TMyClass.TInternalClass.DoSomething;
begin
end;

9.3. Class methods

These are methods you can call having a class reference (TMyClass), not necessarily

a class instance.

type
 TEnemy = class
 procedure Kill;
 class procedure KillAll;
 end;

var
 E: TEnemy;
begin
 E := TEnemy.Create;

83

Modern Object Pascal Introduction for Programmers

 try
 E.Kill;
 finally FreeAndNil(E) end;
 TEnemy.KillAll;
end;

Note that they can be virtual — it makes sense, and is sometimes very useful, when

combined with Section 9.4, “Class references”.

The class methods can also be limited by the Section 4.5, “Visibility specifiers”, like

private or protected . Just like regular methods.

Note that a constructor always acts like a class method when called in a normal fashion

(MyInstance := TMyClass.Create(…);). Although it’s possible to also call a

constructor from within the class itself, like a normal method, and then it acts like a

normal method. This is a useful feature to "chain" constructors, when one constructor

(e.g. overloaded to take an integer parameter) does some job, and then calls another

constructor (e.g. parameter-less).

9.4. Class references

Class reference allows you to choose the class at runtime, for example to call a class

method or constructor without knowing the exact class at compile-time. It is a type

declared as class of TMyClass .

type
 TMyClass = class(TComponent)
 end;

 TMyClass1 = class(TMyClass)
 end;

 TMyClass2 = class(TMyClass)
 end;

 TMyClassRef = class of TMyClass;

var
 C: TMyClass;
 ClassRef: TMyClassRef;
begin
 // Obviously you can do this:

84

Modern Object Pascal Introduction for Programmers

 C := TMyClass.Create(nil); FreeAndNil(C);
 C := TMyClass1.Create(nil); FreeAndNil(C);
 C := TMyClass2.Create(nil); FreeAndNil(C);

 // In addition, using class references, you can also do this:

 ClassRef := TMyClass;
 C := ClassRef.Create(nil); FreeAndNil(C);

 ClassRef := TMyClass1;
 C := ClassRef.Create(nil); FreeAndNil(C);

 ClassRef := TMyClass2;
 C := ClassRef.Create(nil); FreeAndNil(C);
end;

Class references can be combined with virtual class methods. This gives a similar

effect as using classes with virtual methods — the actual method to be executed is

determined at runtime.

type
 TMyClass = class(TComponent)
 class procedure DoSomething; virtual; abstract;
 end;

 TMyClass1 = class(TMyClass)
 class procedure DoSomething; override;
 end;

 TMyClass2 = class(TMyClass)
 class procedure DoSomething; override;
 end;

 TMyClassRef = class of TMyClass;

var
 C: TMyClass;
 ClassRef: TMyClassRef;
begin
 ClassRef := TMyClass1;
 ClassRef.DoSomething;

 ClassRef := TMyClass2;
 ClassRef.DoSomething;

85

Modern Object Pascal Introduction for Programmers

 { And this will cause an exception at runtime,
 since DoSomething is abstract in TMyClass. }
 ClassRef := TMyClass;
 ClassRef.DoSomething;
end;

If you have an instance, and you would like to get a reference to its class (not the

declared class, but the final descendant class used at its construction), you can use the

ClassType property. The declared type of ClassType is TClass , which stands

for class of TObject . Often you can safely typecast it to something more specific,

when you know that the instance is something more specific than TObject .

In particular, you can use the ClassType reference to call virtual methods, including

virtual constructors. This allows you to create a method like Clone that constructs

an instance of the exact run-time class of the current object. You can combine it with

Section 7.3, “Cloning: TPersistent.Assign” to have a method that returns a newly-

constructed clone of the current instance.

Remember that it only works when the constructor of your class is virtual. For example,

it can be used with the standard TComponent descendants, since they all must

override TComponent.Create(AOwner: TComponent) virtual constructor.

type
 TMyClass = class(TComponent)
 procedure Assign(Source: TPersistent); override;
 function Clone(AOwner: TComponent): TMyClass;
 end;

 TMyClassRef = class of TMyClass;

function TMyClass.Clone(AOwner: TComponent): TMyClass;
begin
 // This would always create an instance of exactly TMyClass:
 //Result := TMyClass.Create(AOwner);
 // This can potentially create an instance of TMyClass descendant:
 Result := TMyClassRef(ClassType).Create(AOwner);
 Result.Assign(Self);
end;

86

Modern Object Pascal Introduction for Programmers

9.5. Static class methods

To understand the static class methods, you have to understand how the normal class

methods (described in the previous sections) work. Internally, normal class methods

receive a class reference of their class (it is passed through a hidden, implicitly added

1st parameter of the method). This class reference can be even accessed explicitly

using the Self keyword inside the class method. Usually, it’s a good thing: this class

reference allows you to call virtual class methods (through the virtual method table of

the class).

While this is nice, it makes the normal class methods incompatible when assigning to

a global procedure pointer. That is, this will not compile:

{$mode objfpc}{$H+}{$J-}
type
 TMyCallback = procedure (A: Integer);

 TMyClass = class
 class procedure Foo(A: Integer);
 end;

class procedure TMyClass.Foo(A: Integer);
begin
end;

var
 Callback: TMyCallback;
begin
 // Error: TMyClass.Foo not compatible with TMyCallback
 Callback := @TMyClass(nil).Foo;
end.

In the Delphi mode you would be able to write TMyClass.Foo
instead of an ugly TMyClass(nil).Foo in the example above.

Admittedly, the TMyClass.Foo looks much more elegant,

and it is also better checked by the compiler. Using the

TMyClass(nil).Foo is a hack… unfortunately, necessary (for

now) in the ObjFpc mode which is presented throughout this book.

In any case, assigning the TMyClass.Foo to the Callback
above would still fail in the Delphi mode, for exactly the same

reasons.

87

Modern Object Pascal Introduction for Programmers

The above example fails to compile, because the Callback is incompatible with the

class method Foo . And it’s incompatible because internally the class method has that

special hidden implicit parameter to pass a class reference.

One way to fix the above example is to change the definition of TMyCallback . It

will work if it is a method callback, declared as TMyCallback = procedure (A:
Integer) of object; . But sometimes, it’s not desirable.

Here comes the static class method. It is, in essence, just a global procedure /

function, but its namespace is limited inside the class. It does not have any implicit

class reference (and so, it cannot be virtual and it cannot call virtual class methods).

On the upside, it is compatible with normal (non-object) callbacks. So this will work:

{$mode objfpc}{$H+}{$J-}
type
 TMyCallback = procedure (A: Integer);

 TMyClass = class
 class procedure Foo(A: Integer); static;
 end;

class procedure TMyClass.Foo(A: Integer);
begin
end;

var
 Callback: TMyCallback;
begin
 Callback := @TMyClass.Foo;
end.

9.6. Class properties and variables

A class property is a property that can be accessed through a class reference (it does

not need a class instance).

It is quite straightforward analogy of a regular property (see Section 4.3, “Properties”).

For a class property, you define a getter and / or a setter. They may refer to a class

variable or a static class method.

A class variable is, you guessed it, like a regular field but you don’t need a class instance

to access it. In effect, it’s just like a global variable, but with the namespace limited to

the containing class. It can be declared within the class var section of the class.

88

Modern Object Pascal Introduction for Programmers

Alternatively it can be declared by following the normal field definition with the keyword

static .

And a static class method is just like a global procedure / function, but with the

namespace limited to the containing class. More about static class methods in the

section above, see Section 9.5, “Static class methods”.

{$mode objfpc}{$H+}{$J-}
type
 TMyClass = class
 strict private
 // Alternative:
 // FMyProperty: Integer; static;
 class var
 FMyProperty: Integer;
 class procedure SetMyProperty(const Value: Integer); static;
 public
 class property MyProperty: Integer
 read FMyProperty write SetMyProperty;
 end;

class procedure TMyClass.SetMyProperty(const Value: Integer);
begin
 Writeln('MyProperty changes!');
 FMyProperty := Value;
end;

begin
 TMyClass.MyProperty := 123;
 Writeln('TMyClass.MyProperty is now ', TMyClass.MyProperty);
end.

9.7. Class helpers

The method is just a procedure or function inside a class. From the outside of the

class, you call it with a special syntax MyInstance.MyMethod(…) . After a while you

grow accustomed to thinking that if I want to make action Action on instance X, I write

`X.Action(…)`.

But sometimes, you need to implement something that conceptually is an action

on class TMyClass without modifying the TMyClass source code. Sometimes it’s

because it’s not your source code, and you don’t want to change it. Sometimes

it’s because of the dependencies — adding a method like Render to a class like

89

Modern Object Pascal Introduction for Programmers

TMy3DObject seems like a straightforward idea, but maybe the base implementation

of class TMy3DObject should be kept independent from the rendering code? It would

be better to "enhance" an existing class, to add functionality to it without changing its

source code.

Simple way to do it is then to create a global procedure that takes an instance of

TMy3DObject as its 1st parameter.

procedure Render(const Obj1: TMy3DObject; const Color: TColor);
var
 I: Integer;
begin
 for I := 0 to Obj1.ShapesCount - 1 do
 RenderMesh(Obj1.Shape[I].Mesh, Color);
end;

This works perfectly, but the downside is that calling it looks a little ugly. While usually

you call actions like X.Action(…) , in this case you have to call them like Render(X,
…) . It would be cool to be able to just write X.Render(…) , even when Render is

not implemented in the same unit as TMy3DObject .

And this is where you use class helpers. They are just a way to implement procedures /

functions that operate on given class, and that are called like methods, but are not in

fact normal methods — they were added outside of the TMy3DObject definition.

type
 TMy3DObjectHelper = class helper for TMy3DObject
 procedure Render(const Color: TColor);
 end;

procedure TMy3DObjectHelper.Render(const Color: TColor);
var
 I: Integer;
begin
 { note that we access ShapesCount, Shape without any qualifiers here }
 for I := 0 to ShapesCount - 1 do
 RenderMesh(Shape[I].Mesh, Color);
end;

The more general concept is "type helper". Using them you can add

methods even to primitive types, like integers or enums. You can

90

Modern Object Pascal Introduction for Programmers

also add "record helpers" to (you guessed it…) records. See http://

lists.freepascal.org/fpc-announce/2013-February/000587.html .

9.8. Virtual constructors, destructors

Destructor name is always Destroy , it is virtual (since you can call it without knowing

the exact class at compile-time) and parameter-less.

Constructor name is by convention Create .

You can change this name, although be careful with this — if you define CreateMy ,

always redefine also the name Create , otherwise the user can still access the

constructor Create of the ancestor, bypassing your CreateMy constructor.

In the base TObject it is not virtual, and when creating descendants you’re free to

change the parameters. The new constructor will hide the constructor in ancestor (note:

don’t put here overload , unless you want to break it).

In the TComponent descendants, you should override its constructor
Create(AOwner: TComponent); . For streaming functionality, to create a class

without knowing its type at compile time, having virtual constructors is very useful (see

Section 9.4, “Class references” above).

9.9. An exception in constructor

What happens if an exception happens during a constructor? The line

X := TMyClass.Create;

does not execute to the end in this case, X cannot be assigned, so who will cleanup

after a partially-constructed class?

The solution of Object Pascal is that, in case an exception occurs within a constructor,

then the destructor is called. This is a reason why your destructor must be robust, which

means it should work in any circumstances, even on a half-created class instance.

Usually this is easy if you release everything safely, like by FreeAndNil .

We also have to depend in such cases that the memory of the class is guaranteed to be

zeroed right before the constructor code is executed. So we know that at the beginning,

all class references are nil , all integers are 0 and so on.

91

http://lists.freepascal.org/fpc-announce/2013-February/000587.html
http://lists.freepascal.org/fpc-announce/2013-February/000587.html

Modern Object Pascal Introduction for Programmers

So below works without any memory leaks:

{$mode objfpc}{$H+}{$J-}
uses
 SysUtils;

type
 TGun = class
 end;

 TPlayer = class
 Gun1, Gun2: TGun;
 constructor Create;
 destructor Destroy; override;
 end;

constructor TPlayer.Create;
begin
 inherited;
 Gun1 := TGun.Create;
 raise Exception.Create('Raising an exception from constructor!');
 Gun2 := TGun.Create;
end;

destructor TPlayer.Destroy;
begin
 { in case since the constructor crashed, we can
 have Gun1 <> nil and Gun2 = nil now. Deal with it.
 ...Actually, in this case, FreeAndNil deals with it without
 any additional effort on our side, because FreeAndNil checks
 whether the instance is nil before calling its destructor. }
 FreeAndNil(Gun1);
 FreeAndNil(Gun2);
 inherited;
end;

begin
 try
 TPlayer.Create;
 except
 on E: Exception do
 WriteLn('Caught ' + E.ClassName + ': ' + E.Message);
 end;
end.

92

Modern Object Pascal Introduction for Programmers

10. Interfaces

10.1. Bare (CORBA) interfaces

An interface declares an API, much like a class, but it does not define the

implementation. A class can implement many interfaces, but it can only have one

ancestor class.

You can cast a class to any interface it supports, and then call the methods through

that interface. This allows to treat in a uniform fashion the classes that don’t descend

from each other, but still share some common functionality. Useful when a simple class

inheritance is not enough.

The CORBA interfaces in Object Pascal work pretty much like interfaces in Java

(https://docs.oracle.com/javase/tutorial/java/concepts/interface.html) or C# (https://

msdn.microsoft.com/en-us/library/ms173156.aspx).

{$mode objfpc}{$H+}{$J-}
{$interfaces corba}

uses
 SysUtils, Classes;

type
 IMyInterface = interface
 ['{79352612-668B-4E8C-910A-26975E103CAC}']
 procedure Shoot;
 end;

 TMyClass1 = class(IMyInterface)
 procedure Shoot;
 end;

 TMyClass2 = class(IMyInterface)
 procedure Shoot;
 end;

 TMyClass3 = class
 procedure Shoot;
 end;

procedure TMyClass1.Shoot;
begin

93

https://docs.oracle.com/javase/tutorial/java/concepts/interface.html
https://msdn.microsoft.com/en-us/library/ms173156.aspx
https://msdn.microsoft.com/en-us/library/ms173156.aspx

Modern Object Pascal Introduction for Programmers

 WriteLn('TMyClass1.Shoot');
end;

procedure TMyClass2.Shoot;
begin
 WriteLn('TMyClass2.Shoot');
end;

procedure TMyClass3.Shoot;
begin
 WriteLn('TMyClass3.Shoot');
end;

procedure UseThroughInterface(I: IMyInterface);
begin
 Write('Shooting... ');
 I.Shoot;
end;

var
 C1: TMyClass1;
 C2: TMyClass2;
 C3: TMyClass3;
begin
 C1 := TMyClass1.Create;
 C2 := TMyClass2.Create;
 C3 := TMyClass3.Create;
 try
 if C1 is IMyInterface then
 UseThroughInterface(C1 as IMyInterface);
 if C2 is IMyInterface then
 UseThroughInterface(C2 as IMyInterface);
 // The "C3 is IMyInterface" below is false,
 // so "UseThroughInterface(C3 as IMyInterface)" will not execute.
 if C3 is IMyInterface then
 UseThroughInterface(C3 as IMyInterface);
 finally
 FreeAndNil(C1);
 FreeAndNil(C2);
 FreeAndNil(C3);
 end;
end.

94

Modern Object Pascal Introduction for Programmers

10.2. CORBA and COM types of interfaces

Why are the interfaces (presented above) called "CORBA"?

The name CORBA is unfortunate. A better name would be bare interfaces. These

interfaces are a "pure language feature". Use them when you want to cast various

classes as the same interface, because they share a common API.

While these types of interfaces can be used together with the CORBA (Common

Object Request Broker Architecture) technology (see https://en.wikipedia.org/

wiki/Common_Object_Request_Broker_Architecture), they are not tied to this

technology in any way.

Is the {$interfaces corba} declaration needed?

Yes, because by default you create COM interfaces. This can be stated explicitly

by saying {$interfaces com} , but usually it’s not needed since it’s the default

state.

And I don’t advise using COM interfaces, especially if you’re looking for something

equivalent to interfaces from other programming languages. The CORBA interfaces

in Pascal are exactly what you expect if you’re looking for something equivalent to

the interfaces in C# and Java. While the COM interfaces bring additional features

that you possibly don’t want.

Note that the {$interfaces xxx} declaration only affects the interfaces

that do not have any explicit ancestor (just the keyword interface , not

interface(ISomeAncestor)). When an interface has an ancestor, it has the

same type as the ancestor, regardless of the {$interfaces xxx} declaration.

What are COM interfaces?

The COM interface is synonymous with an interface descending from a special

IUnknown interface. Descending from IUnknown :

• Requires that your classes define the _AddRef and _ReleaseRef methods.

Proper implementation of these methods can manage the lifetime of your objects

using the reference-counting.

• Adds the QueryInterface method.

• Allows to interact with the COM (Component Object Model) technology.

Why do you advise to not use the COM interfaces?

Because COM interfaces "entangle" two features that should be unrelated

(orthogonal) in my view: multiple inheritance and reference counting. Other

programming languages rightly use separate concepts for these two features.

95

https://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture
https://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture

Modern Object Pascal Introduction for Programmers

To be clear: reference-counting, that provides an automatic memory management

(in simple situations, i.e. without cycles), is a very useful concept. But entangling

this feature with interfaces (instead of making them orthogonal features) is

unclean in my eyes. It definitely doesn’t match my use cases.

• Sometimes I want to cast my (otherwise unrelated) classes to a common

interface.

• Sometimes I want to manage memory using the reference counting approach.

• Maybe some day I will want to interact with the COM technology.

But these are all separate, unrelated needs. Entangling them in a single language

feature is counter-useful in my experience. It does cause actual problems:

• If I want the feature of casting classes to a common interface API, but I don’t

want the reference-counting mechanism (I want to manually free objects), then

the COM interfaces are problematic. Even when reference-counting is disabled

by a special _AddRef and _ReleaseRef implementation, you still need to be

careful to never have a temporary interface reference hanging, after you have

freed the class instance. More details about it in the next section.

• If I want the feature of reference counting, but I have no need for an interface

hierarchy to represent something different than the class hierarchy, then I have

to duplicate my classes API in interfaces. Thus creating a single interface for

each class. This is counter-productive. I would much rather have smart pointers

as a separate language feature, not entangled with interfaces (and luckily, it’s

coming:).

That is why I advise to use CORBA style interfaces, and the {$interfaces
corba} directive, in all modern code dealing with interfaces.

Only if you need both "reference counting" and "multiple inheritance" at the same

time, then use COM interfaces. Also, Delphi has only COM interfaces for now, so

you need to use COM interfaces if your code must be compatible with Delphi.

Can we have reference-counting with CORBA interfaces?

Yeah. Just add _AddRef / _ReleaseRef methods. There’s no need to descend

from the IUnknown interface. Although in most cases, if you want reference-

counting with your interfaces, you may as well just use COM interfaces.

96

Modern Object Pascal Introduction for Programmers

10.3. Interfaces GUIDs

GUIDs are the seemingly random characters ['{ABCD1234-…}'] that you see

placed at every interface definition. Yes, they are just random. Unfortunately, they are

necessary.

The GUIDs have no meaning if you don’t plan on integrating with communication

technologies like COM nor CORBA. But they are necessary, for implementation

reasons. Don’t be fooled by the compiler, that unfortunately allows you to declare

interfaces without GUIDs.

Without the (unique) GUIDs, your interfaces will be treated equal by the is operator.

In effect, it will return true if your class supports any of your interfaces. The magic

function Supports(ObjectInstance, IMyInterface) behaves slightly better

here, as it refuses to be compiled for interfaces without a GUID. This is true for both

CORBA and COM interfaces, as of FPC 3.0.0.

So, to be on the safe side, you should always declare a GUID for your interface. You

can use Lazarus GUID generator (Ctrl + Shift + G shortcut in the editor). Or

you can use an online service like https://www.guidgenerator.com/ .

Or you can write your own tool for this, using the CreateGUID and GUIDToString
functions in RTL. See the example below:

{$mode objfpc}{$H+}{$J-}
uses
 SysUtils;
var
 MyGuid: TGUID;
begin
 Randomize;
 CreateGUID(MyGuid);
 WriteLn('[''' + GUIDToString(MyGuid) + ''']');
end.

10.4. Reference-counted (COM) interfaces

The COM interfaces bring two additional features:

1. integration with COM (a technology from Windows, also available on Unix through

XPCOM, used by Mozilla),

97

https://www.guidgenerator.com/

Modern Object Pascal Introduction for Programmers

2. reference counting (which gives you automatic destruction when all the interface

references go out of scope).

When using COM interfaces, you need to be aware of their automatic destruction

mechanism and relation to COM technology.

In practice, this means that:

• Your class needs to implement a magic _AddRef , _Release , and

QueryInterface methods. Or descend from something that already implements

them. A particular implementation of these methods may actually enable or disable

the reference-counting feature of COM interfaces (although disabling it is somewhat

dangerous — see the next point).

The standard class TInterfacedObject implements these methods to

enable the reference-counting.

The standard class TComponent implements these methods to disable

the reference-counting. In the Castle Game Engine we give you

additional useful ancestors TNonRefCountedInterfacedObject and

TNonRefCountedInterfacedPersistent for this purpose, see https://

github.com/castle-engine/castle-engine/

blob/0519585abc13e8386cdae5f7dfef6f9659dc9b57/src/base/

castleinterfaces.pas .

• You need to be careful of freeing the class, when it may be referenced by

some interface variables. Because the interface is released using a virtual method

(because it may be reference-counted, even if you hack the _AddRef method to not

be reference-counted…), you cannot free the underlying object instance as long as

some interface variable may point to it. See "7.7 Reference counting" in the FPC

manual (http://freepascal.org/docs-html/ref/refse47.html).

The safest approach to using COM interfaces is to

• accept the fact that they are reference-counted,

• derive the appropriate classes from TInterfacedObject ,

• and avoid using the class instance, instead accessing the instance always through

the interface, letting reference-counting manage the deallocation.

This is an example of such interface use:

{$mode objfpc}{$H+}{$J-}

98

https://github.com/castle-engine/castle-engine/blob/0519585abc13e8386cdae5f7dfef6f9659dc9b57/src/base/castleinterfaces.pas
https://github.com/castle-engine/castle-engine/blob/0519585abc13e8386cdae5f7dfef6f9659dc9b57/src/base/castleinterfaces.pas
https://github.com/castle-engine/castle-engine/blob/0519585abc13e8386cdae5f7dfef6f9659dc9b57/src/base/castleinterfaces.pas
https://github.com/castle-engine/castle-engine/blob/0519585abc13e8386cdae5f7dfef6f9659dc9b57/src/base/castleinterfaces.pas
http://freepascal.org/docs-html/ref/refse47.html

Modern Object Pascal Introduction for Programmers

{$interfaces com}

uses
 SysUtils, Classes;

type
 IMyInterface = interface
 ['{3075FFCD-8EFB-4E98-B157-261448B8D92E}']
 procedure Shoot;
 end;

 TMyClass1 = class(TInterfacedObject, IMyInterface)
 procedure Shoot;
 end;

 TMyClass2 = class(TInterfacedObject, IMyInterface)
 procedure Shoot;
 end;

 TMyClass3 = class(TInterfacedObject)
 procedure Shoot;
 end;

procedure TMyClass1.Shoot;
begin
 WriteLn('TMyClass1.Shoot');
end;

procedure TMyClass2.Shoot;
begin
 WriteLn('TMyClass2.Shoot');
end;

procedure TMyClass3.Shoot;
begin
 WriteLn('TMyClass3.Shoot');
end;

procedure UseThroughInterface(I: IMyInterface);
begin
 Write('Shooting... ');
 I.Shoot;
end;

var

99

Modern Object Pascal Introduction for Programmers

 C1: IMyInterface; // COM takes care of destruction
 C2: IMyInterface; // COM takes care of destruction
 C3: TMyClass3; // YOU have to take care of destruction
begin
 C1 := TMyClass1.Create as IMyInterface;
 C2 := TMyClass2.Create as IMyInterface;
 C3 := TMyClass3.Create;
 try
 UseThroughInterface(C1); // no need to use "as" operator
 UseThroughInterface(C2);
 if C3 is IMyInterface then
 UseThroughInterface(C3 as IMyInterface); // this will not execute
 finally
 { C1 and C2 variables go out of scope and will be auto-destroyed now.

 In contrast, C3 is a class instance, not managed by an interface,
 and it has to be destroyed manually. }
 FreeAndNil(C3);
 end;
end.

10.5. Using COM interfaces with reference-counting disabled

As mentioned in the previous section, your class can descend from

TComponent (or a similar class like TNonRefCountedInterfacedObject and

TNonRefCountedInterfacedPersistent) which disables reference-counting for

COM interfaces. This allows you to use COM interfaces, and still free the class instance

manually.

You need to be careful in this case to not free the class instance when some interface

variable may refer to it. Remember that every typecast Cx as IMyInterface also

creates a temporary interface variable, which may be present even until the end of

the current procedure. For this reason, the example below uses a UseInterfaces
procedure, and it frees the class instances outside of this procedure (when we can be

sure that temporary interface variables are out of scope).

To avoid this mess, it’s usually better to use CORBA interfaces, if you don’t want

reference-counting with your interfaces.

{$mode objfpc}{$H+}{$J-}
{$interfaces com}

uses

100

Modern Object Pascal Introduction for Programmers

 SysUtils, Classes;

type
 IMyInterface = interface
 ['{3075FFCD-8EFB-4E98-B157-261448B8D92E}']
 procedure Shoot;
 end;

 TMyClass1 = class(TComponent, IMyInterface)
 procedure Shoot;
 end;

 TMyClass2 = class(TComponent, IMyInterface)
 procedure Shoot;
 end;

 TMyClass3 = class(TComponent)
 procedure Shoot;
 end;

procedure TMyClass1.Shoot;
begin
 WriteLn('TMyClass1.Shoot');
end;

procedure TMyClass2.Shoot;
begin
 WriteLn('TMyClass2.Shoot');
end;

procedure TMyClass3.Shoot;
begin
 WriteLn('TMyClass3.Shoot');
end;

procedure UseThroughInterface(I: IMyInterface);
begin
 Write('Shooting... ');
 I.Shoot;
end;

var
 C1: TMyClass1;
 C2: TMyClass2;
 C3: TMyClass3;

101

Modern Object Pascal Introduction for Programmers

procedure UseInterfaces;
begin
 if C1 is IMyInterface then
 //if Supports(C1, IMyInterface) then // equivalent to "is" check above
 UseThroughInterface(C1 as IMyInterface);
 if C2 is IMyInterface then
 UseThroughInterface(C2 as IMyInterface);
 if C3 is IMyInterface then
 UseThroughInterface(C3 as IMyInterface);
end;

begin
 C1 := TMyClass1.Create(nil);
 C2 := TMyClass2.Create(nil);
 C3 := TMyClass3.Create(nil);
 try
 UseInterfaces;
 finally
 FreeAndNil(C1);
 FreeAndNil(C2);
 FreeAndNil(C3);
 end;
end.

10.6. Typecasting interfaces

This section applies to both CORBA and COM interfaces (however, it has some explicit

exceptions for CORBA).

1. Casting to an interface type using the as operator makes a check at run-time.

Consider this code:

UseThroughInterface(Cx as IMyInterface);

It works for all C1 , C2 , C3 instances in the examples in previous sections. If

executed, it would make a run-time error in case of C3 , that does not implement

IMyInterface .

Using as operator works consistently regardless if Cx is declared as a class

instance (like TMyClass2) or interface (like IMyInterface2).

However, it is not allowed for CORBA interfaces.

102

Modern Object Pascal Introduction for Programmers

2. You can instead cast the instance as an interface implicitly:

UseThroughInterface(Cx);

In this case, the typecast must be valid at compile-time. So this will compile for C1
and C2 (that are declared as classes that implement IMyInterface). But it will

not compile for C3 .

In essence, this typecast looks and works just like for regular classes. Wherever

an instance of a class TMyClass is required, you can always use there a variable

that is declared with a class of TMyClass , or TMyClass descendant. The same

rule applies to interfaces. No need for any explicit typecast in such situations.

3. You can also typecast using IMyInterface(Cx) . Like this:

UseThroughInterface(IMyInterface(Cx));

Usually, such typecasting syntax indicates an unsafe, unchecked typecast. Bad

things will happen if you cast to an incorrect interface. And that’s true, if you cast a

class to a class, or an interface to an interface, using this syntax.

There is a small exception here: if Cx is declared as a class (like TMyClass2),

then this is a typecast that must be valid at compile-time. So casting a class to an

interface this way is a safe, fast (checked at compile-time) typecast.

To test it all, play around with this example code:

{$mode objfpc}{$H+}{$J-}

// {$interfaces corba} // note that "as" typecasts for CORBA will not
 compile

uses Classes;

type
 IMyInterface = interface
 ['{7FC754BC-9CA7-4399-B947-D37DD30BA90A}']
 procedure One;
 end;

 IMyInterface2 = interface(IMyInterface)
 ['{A72B7008-3F90-45C1-8F4C-E77C4302AA3E}']

103

Modern Object Pascal Introduction for Programmers

 procedure Two;
 end;

 IMyInterface3 = interface(IMyInterface2)
 ['{924BFB98-B049-4945-AF17-1DB08DB1C0C5}']
 procedure Three;
 end;

 TMyClass = class(TComponent, IMyInterface)
 procedure One;
 end;

 TMyClass2 = class(TMyClass, IMyInterface, IMyInterface2)
 procedure One;
 procedure Two;
 end;

procedure TMyClass.One;
begin
 Writeln('TMyClass.One');
end;

procedure TMyClass2.One;
begin
 Writeln('TMyClass2.One');
end;

procedure TMyClass2.Two;
begin
 Writeln('TMyClass2.Two');
end;

procedure UseInterface2(const I: IMyInterface2);
begin
 I.One;
 I.Two;
end;

procedure UseInterface3(const I: IMyInterface3);
begin
 I.One;
 I.Two;
 I.Three;
end;

104

Modern Object Pascal Introduction for Programmers

var
 My: IMyInterface;
 MyClass: TMyClass;
begin
 My := TMyClass2.Create(nil);
 MyClass := TMyClass2.Create(nil);

 // This doesn't compile, since at compile-time it's unknown if My is
 IMyInterface2.
 // UseInterface2(My);
 // UseInterface2(MyClass);

 // This compiles and works OK.
 UseInterface2(IMyInterface2(My));
 // This does not compile. Casting InterfaceType(ClassType) is checked at
 compile-time.
 // UseInterface2(IMyInterface2(MyClass));

 // This compiles and works OK.
 UseInterface2(My as IMyInterface2);
 // This compiles and works OK.
 UseInterface2(MyClass as IMyInterface2);

 // This compiles, but will fail at runtime, with ugly "Access
 violation".
 // UseInterface3(IMyInterface3(My));
 // This does not compile. Casting InterfaceType(ClassType) is checked at
 compile-time.
 // UseInterface3(IMyInterface3(MyClass));

 // This compiles, but will fail at runtime, with nice "EInvalidCast:
 Invalid type cast".
 // UseInterface3(My as IMyInterface3);
 // This compiles, but will fail at runtime, with nice "EInvalidCast:
 Invalid type cast".
 // UseInterface3(MyClass as IMyInterface3);

 Writeln('Finished');
end.

11. About this document

Copyright Michalis Kamburelis.

105

Modern Object Pascal Introduction for Programmers

The source code of this document is in AsciiDoc on https://github.com/michaliskambi/

modern-pascal-introduction. Suggestions for corrections and additions, and patches

and pull requests, are always very welcome:) You can reach me through GitHub

or email michalis@castle-engine.io1. My homepage is https://michalis.xyz/. This

document is linked under the Documentation section of the Castle Game Engine

website https://castle-engine.io/.

You can redistribute and even modify this document freely, under the same licenses

as Wikipedia https://en.wikipedia.org/wiki/Wikipedia:Copyrights :

• Creative Commons Attribution-ShareAlike 3.0 Unported License (CC BY-SA)

• or the GNU Free Documentation License (GFDL) (unversioned, with no invariant

sections, front-cover texts, or back-cover texts) .

Thank you for reading!

1 mailto:michalis@castle-engine.io

106

https://github.com/michaliskambi/modern-pascal-introduction
https://github.com/michaliskambi/modern-pascal-introduction
mailto:michalis@castle-engine.io
https://michalis.xyz/
https://castle-engine.io/
https://en.wikipedia.org/wiki/Wikipedia:Copyrights
mailto:michalis@castle-engine.io

	Modern Object Pascal Introduction for Programmers
	Table of Contents
	1. Why
	2. Basics
	2.1. "Hello world" program
	2.2. Functions, procedures, primitive types
	2.3. Testing (if)
	2.4. Logical, relational and bit-wise operators
	2.5. Testing single expression for multiple values (case)
	2.6. Enumerated and ordinal types and sets and constant-length arrays
	2.7. Loops (for, while, repeat, for .. in)
	2.8. Output, logging
	2.9. Converting to a string

	3. Units
	3.1. Units using each other
	3.2. Qualifying identifiers with unit name
	3.3. Exposing one unit identifiers from another

	4. Classes
	4.1. Basics
	4.2. Inheritance, is, as
	4.3. Properties
	Serialization of properties

	4.4. Exceptions - Quick Example
	4.5. Visibility specifiers
	4.6. Default ancestor
	4.7. Self
	4.8. Calling inherited method
	4.9. Virtual methods, override and reintroduce

	5. Freeing classes
	5.1. Remember to free the class instances
	5.2. How to free
	5.3. Manual and automatic freeing
	5.4. The virtual destructor called Destroy
	5.5. Free notification
	5.6. Free notification observer (Castle Game Engine)

	6. Exceptions
	6.1. Overview
	6.2. Raising
	6.3. Catching
	6.4. Finally (doing things regardless if an exception occurred)
	6.5. How the exceptions are displayed by various libraries

	7. Run-time library
	7.1. Input/output using streams
	7.2. Containers (lists, dictionaries) using generics
	7.3. Cloning: TPersistent.Assign

	8. Various language features
	8.1. Local (nested) routines
	8.2. Callbacks (aka events, aka pointers to functions, aka procedural variables)
	8.3. Generics
	8.4. Overloading
	8.5. Preprocessor
	8.6. Records
	8.7. Old-style objects
	8.8. Pointers
	8.9. Operator overloading

	9. Advanced classes features
	9.1. Private and strict private
	9.2. More stuff inside classes and nested classes
	9.3. Class methods
	9.4. Class references
	9.5. Static class methods
	9.6. Class properties and variables
	9.7. Class helpers
	9.8. Virtual constructors, destructors
	9.9. An exception in constructor

	10. Interfaces
	10.1. Bare (CORBA) interfaces
	10.2. CORBA and COM types of interfaces
	10.3. Interfaces GUIDs
	10.4. Reference-counted (COM) interfaces
	10.5. Using COM interfaces with reference-counting disabled
	10.6. Typecasting interfaces

	11. About this document

