
Getting Started With Pascal Programming 1

James Tam

Getting Started With Pascal
Programming

How are computer programs created

What is the basic structure of a Pascal Program

Variables and constants

Input and output

Pascal operators

Common programming errors

Introduction to program design and problem solving

James Tam

Reminder: About The Course Textbook

•It’s recommended but not a required purchase.
•However the course notes are required for this course

Getting Started With Pascal Programming 2

James Tam

Reminder: How To Use The Course Resources

•They are provided to support and supplement this class.

•Neither the course notes nor the text book are meant as a
substitute for regular attendance to lecture and the tutorials.

James Tam

Reminder: How To Use The Course Resources (2)

procedure add (var head : NodePointer;
var newNode : NodePointer);

var
temp : NodePointer;

begin
if (head = NIL) then

head := newNode
else
begin

temp := head;
while (temp^.next <> NIL) do

temp := temp^.next;
temp^.next := newNode;

end;
newNode^.next := NIL;

end;

Getting Started With Pascal Programming 3

James Tam

Reminder: How To Use The Course Resources (2)

procedure add (var head : NodePointer;
var newNode : NodePointer);

var
temp : NodePointer;

begin
if (head = NIL) then

head := newNode
else
begin

temp := head;
while (temp^.next <> NIL) do

temp := temp^.next;
temp^.next := newNode;

end;
newNode^.next := NIL;

end;

If y
ou miss a class make

sure that you catch up on

what you missed (get

someone’s class notes)

...when you do make it to

class make sure that you

supplement the slides with

your own notes (cause you

aint gonna remember it in

the exams if you don’t)

James Tam

But Once You’ve Made An Attempt To Catch Up

•Ask for help if you need it
•There are no dumb questions

Image from “The Simpsons” © Fox

Getting Started With Pascal Programming 4

James Tam

Don’t Forget: How To Succeed In This Course

1. Practice things yourself
2. Make sure that you keep up with the material
3. Look at the material before coming to lecture
4. Start working on things early

James Tam

Computer Programs

1) A programmer
writes a computer
program

4) Anybody who has
this executable
installed on their
computer can run
(use) it.

3) An
executable
program is
created

Binary is the language of the computer

2) A translator
converts the
program into a
form that the
computer can
understand

Translator
e.g., gpc

Getting Started With Pascal Programming 5

James Tam

Translators

Convert computer programs to machine language

Types
1) Interpreters

• Each time that the program is run the interpreter translates the program
(translating a part at a time).

• If there are any errors during the process of interpreting the program, the
program will stop running right when the error is encountered.

2) Compilers
• Before the program is run the compiler translates the program (compiling it all

at once).
• If there are any errors during the compilation process, no machine language

executable will be produced.
• If there are no errors during compilation then the translated machine language

program can be run.

James Tam

Compiling Programs: Basic View

gpc

Pascal
compiler

input a.out

Machine
language
program

outputfilename.p

Pascal
program

Getting Started With Pascal Programming 6

James Tam

The Smallest Pascal Program

program smallest;

begin

end.

Note: The name in the header "smallest" should match the filename "smallest.p". You
can find an online version of this program in the Unix file system under
/home/231/examples/intro/smallest.p (the compiled version is called "smallest").

James Tam

Creating And Compiling Programs On The
Computer Science Network

filename.p
(Unix file)

Pascal program
XEmacs

Text editor

gpc

Pascal
compiler

Machine language
program

a.out (Unix
file)

To begin creating the Pascal program
in Unix type "XEmacs filename.p"

To compile the program in
Unix type "gpc filename.p"

To run the program in Unix
type "./a.out"

Getting Started With Pascal Programming 7

James Tam

Source Code Vs. Executable Files

Source code (e.g., smallest.p file)
• A file that contains the Pascal program code.
• It must end with a ‘dot-p’ suffix (program name.p).
• Can be viewed and edited.
• Cannot be executed.

Executable code (often it’s the “a.out” file)
• A file that contains machine language (binary) code.
• By default this file will be called “a.out”.
• It cannot be directly viewed or edited (meaningless).
• It can be executed.

program smallest;
begin

: :
end.

ELF^A^B^A^@^@^
@^@^@^@^@^@^
@^@^B^@^B^@^@
^@^A^@^A^Zh^@^
@^@4^@^B\263\37
0^@^@^@^@^@4^
@
^@^E^@(^@^]^@^Z
^@^@^@^F^@^@^\

: :

James Tam

Basic Structure Of Pascal Programs

Program documentation

program name (input, output);

Part I: Header

const

:

Part II: Declarations

begin

:

end.

Part III: Statements

Program name.p (Pascal source code)

Getting Started With Pascal Programming 8

James Tam

Details Of The Parts Of A Pascal Program

Part I: Header
• Parts:

1) Program documentation
- Comments for the reader of the program (and not the computer)

(* Marks the beginning of the documentation
*) Marks the end of the documentation

2) Program heading
- Keyword: program, Name of program, if input and/or output operations

performed by the program.

• Example
(*
* Tax-It v1.0: This program will electronically calculate your tax return.
* This program will only allow you to complete a Canadian tax return.

*)

program taxIt (input, output);

Documentation

Heading

James Tam

Program Documentation

Program documentation: Used to provide information about a
computer program to another programmer:

User manual: Used to provide information about how to use a
program to users of that program:

• Often written inside the same file as the computer program (when you see
the computer program you can see the documentation).

• The purpose is to help other programmers understand how the program code
was written: how it works, what are some of it’s limitations etc.

• User manuals are traditionally printed on paper but may also be electronic
but in the latter case the user manual typically takes the form of electronic
help that can be accessed as the program is run.

• The purpose is to help users of the program use the different features of the
program without mention of technical details.

Getting Started With Pascal Programming 9

James Tam

Program Documentation (2)

•It doesn’t get translated into binary.
•It doesn’t contain instructions for the computer to execute.
•It is for the reader of the program:
• What does the program do e.g., tax program.
• What are it’s capabilities e.g., it calculates personal or small business tax.
• What are it’s limitations e.g., it only follows Canadian tax laws and cannot

be used in the US.
• What is the version of the program

- If you don’t use numbers for the different versions of your program then
consider using dates.

• How does the program work.
- This is often a description in English (or another high-level) language that

describes the way in which the program fulfills its functions.
- The purpose of this description is to help the reader quickly understand how the

program works

James Tam

Details Of The Parts Of A Pascal Program (2)

Part II: Declarations
• List of constants
• More to come later during this term regarding this section

Part III: Statements
• The instructions in the program that actually gets things done
• They tell the computer what to do as the program is running
• Statement are separated by semicolons ";“
• Example statements: display a message onscreen, prompt the user for input,

open a file and write information to that file etc.
• Much more to come later throughout the rest of the term regarding this

section

Getting Started With Pascal Programming 10

James Tam

Performing Calculations

MODRemainder (modulo)

DIVInteger division

/Real number division

*Multiplication

-Subtraction

+Addition

Symbol (Operator)Operation

James Tam

Storing Information

Information

Could it change?
(Use a variable)

Never changes.
(Use a named constant)

Getting Started With Pascal Programming 11

James Tam

Variables

Set aside a location in memory
• This location can store one ‘piece’ of information

Used to store information (temporary)
• At most the information will be accessible as long as the program runs

Types:
• integer – whole numbers
• real – whole numbers and fractions
• char – a single character: alphabetic, numeric and miscellaneous symbols

(in UNIX type “man ascii”)
• boolean – a true or false value

Usage (must be done in this order!)
• Declaration
• Accessing or assigning values to the variables

Picture from Computers in your future by Pfaffenberger B

James Tam

Declaring Variables

Sets aside memory

Memory locations are addressed through the name of the variable

RAM

Name of
variable RESERVED

Getting Started With Pascal Programming 12

James Tam

Declaring Variables

Program documentation

program name (input, output);

Part I: Header

const

:

Part II: Declarations

begin

end.

Part III: Statements

Declare variables between the ‘begin’ and ‘end.’

Declare variables here (just after the ‘begin’

James Tam

Declaring Variables (3)

Format:
var name of first variable : type of first variable;
var name of second variable : type of second variable;

Example:
The full example can be found in UNIX under:
/home/231/examples/intro/variableExample1.p (variableExample1 for the
compiled version).

program variableExample1;
begin

var height : real;
var weight : real;
var age : integer;

end.

Variable
declaration

Getting Started With Pascal Programming 13

James Tam

Global Variables

• Variables declared outside of the begin-end pair.
program anExample;

var num1 : integer;

begin

var num2 : integer;

end.

• For now avoid doing this (additional details will be provided
later in the course): generally this is regarded as bad
programming style.

Global variable: DON’T DO
IT THIS WAY

Non-global variable (local
variable): DO IT THIS WAY

James Tam

Variable Naming Conventions

• Should be meaningful
• Any combination of letters, numbers or underscore (can't

begin with a number and shouldn't begin with an underscore)
• Can't be a reserved word (see the “Reserved Words” slide)
• Avoid using predefined identifiers (see the “Standard

Identifiers” slides)
• Avoid distinguishing variable names only by case
• For variable names composed of multiple words separate each

word by capitalizing the first letter of each word (save for the
first word) or by using an underscore.

Getting Started With Pascal Programming 14

James Tam

Reserved Words

Have a predefined meaning in Pascal that cannot be changed

whilewhilevaruntiltypetothensetrepeat

recordprogramprocedurepackedorofnotnilmod

labelinifgotofunctionforwardforfileend

elsedowntododivconstcasebeginarrayand

For more information on reserved words go to the url: http://www.gnu-pascal.de/gpc/index.html

James Tam

Standard Identifiers

Have a predefined meaning in Pascal that SHOULD NOT be changed

Predefined constants
• false
• true
• maxint

Predefined types
• boolean
• char
• integer
• real
• text

Predefined files
• input
• output

For more information on standard identifiers go to the url: http://www.gnu-pascal.de/gpc/index.html

Getting Started With Pascal Programming 15

James Tam

Standard Identifiers (2)

Predefined functions

truncsuccsqrtsqrsin

roundpredordoddlnexp

eolneofcoschrarctanabs

For more information on standard identifiers go to the url: http://www.gnu-pascal.de/gpc/index.html

James Tam

Standard Identifiers (3)

writelnwriteunpack

rewriteresetreadlnreadput

pagepacknewgetdispose

Predefined procedures

For more information on standard identifiers go to the url: http://www.gnu-pascal.de/gpc/index.html

Getting Started With Pascal Programming 16

James Tam

Variable Naming Conventions (2)

• Okay:
- tax_rate
- firstName

• Not Okay (violate Pascal syntax)
- 1abc
- test.msg
- good-day
- program

• Not okay (bad style)
- x
- writeln

James Tam

Accessing Variables

Can be done by referring to the name of the variable

Format:
name of variable

Example:
num

Getting Started With Pascal Programming 17

James Tam

Assigning Values To Variables

Format:
Destination := Source; 1

Example:
The full example can be found in UNIX under:
/home/231/examples/intro/variableExample2.p (variableExample2 for the
compiled version).

program variableExample2;
begin

var height : real;
var weight : real;
var age : integer;
weight := height * 2.2;

end.

1 The source can be any expression (constant, variable or mathematical formula)

NO!

James Tam

Assigning Values To Variables (2)

program variableExample2;
begin

var height : real;
var weight : real;
var age : integer;
height := 69;
weight := height * 2.2;

end.

A better
approach

Important lesson: ALWAYS initialize your variables to some
default starting value before using them.

Getting Started With Pascal Programming 18

James Tam

Assigning Values To Variables (3)

Avoid assigning mixed types:

program variableExample;
begin

var num1 : integer;
var num2 : real;

num1 := 12;
num2 := 12.5;
num2 := num1;

end.

num1 := num2;

Not allowed!

Rare

James Tam

Reminder: Variables Must First Be Declared Before
They Can Be Used! (The Right Way)

Correct:
RAM

var num : integer;

num

num := 888;

888

program anExample;

begin

end.

Getting Started With Pascal Programming 19

James Tam

program anExample;

begin

end.

Reminder: Variables Must First Be Declared Before
They Can Be Used! (The Wrong Way)

Incorrect:
RAM

var num : integer;

num := 888;

Compile
Error:

Where is
num???

James Tam

Named Constants

A memory location that is assigned a value that CANNOT be changed

Declared in the constant declaration ("const") section

The naming conventions for choosing variable names generally apply to
constants but the name of constants should be all UPPER CASE. (You can
separate multiple words with an underscore).

Format:

const

NAME_OF_FIRST_CONSTANT = value of first constant;

NAME_OF_SECOND_CONSTANT = value of second constant;

etc.

Getting Started With Pascal Programming 20

James Tam

Named Constants (2)

Examples:

const

TAX_RATE = 0.25;

SAMPLE_SIZE = 1000;

YES = True;

NO = False;

James Tam

Declaring Named Constants

Program documentation

program name (input, output);

Part I: Header

const
Part II: Declarations

begin

: :

end.

Part III: Statements

Named constants are declared in the declarations section

Declare constants here

Getting Started With Pascal Programming 21

James Tam

Named Constants: A Compilable Example

program anExample;
const

TAX_RATE = 0.25;
SAMPLE_SIZE = 1000;
YES = True;
NO = False;
MY_FIRST_INITIAL = ‘J’;

begin
var grossIncome : real;
var afterTaxes : real;
grossIncome := 100000;
afterTaxes := grossIncome – (grossIncome * TAX_RATE);

end.

James Tam

Purpose Of Named Constants

1) Makes the program easier to understand

populationChange := (0.1758 – 0.1257) * currentPopulation;

Vs.

const

BIRTH_RATE = 0.1758;

DEATH_RATE = 0.1257;

begin

populationChange := (BIRTH_RATE – DEATH_RATE) *

currentPopulation;

Magic Numbers
(avoid whenever
possible!)

Getting Started With Pascal Programming 22

James Tam

Purpose Of Named Constants (2)

2) Makes the program easier to maintain
- If the constant is referred to several times throughout the program,

changing the value of the constant once will change it throughout the
program.

James Tam

Purpose Of Named Constants (3)

program population (output);

const

BIRTH_RATE = 0.1758;

DEATH_RATE = 0.1257;

begin

var populationChange : real;

var currentPopulation : real;

populationChange := (BIRTH_RATE - DEATH_RATE) * currentPopulation;

if (populationChange > 0) then
writeln(‘Births: ‘, BIRTH_RATE, ‘ Deaths:’, DEATH_RATE, ‘ Change:’,

populationChange)

else if (populationChange < 0) then
writeln(‘Births: ‘, BIRTH_RATE, ‘ Deaths:’, DEATH_RATE, ‘ Change:’,

populationChange)

end.

Getting Started With Pascal Programming 23

James Tam

Purpose Of Named Constants (3)

program population (output);

const

BIRTH_RATE = 0.5;

DEATH_RATE = 0.1257;

begin

var populationChange : real;

var currentPopulation : real;

populationChange := (BIRTH_RATE - DEATH_RATE) * currentPopulation;

if (populationChange > 0) then
writeln(‘Births: ‘, BIRTH_RATE, ‘ Deaths:’, DEATH_RATE, ‘ Change:’,

populationChange)

else if (populationChange < 0) then
writeln(‘Births: ‘, BIRTH_RATE, ‘ Deaths:’, DEATH_RATE, ‘ Change:’,

populationChange)

end.

James Tam

Purpose Of Named Constants (3)

program population (output);

const

BIRTH_RATE = 0.1758;

DEATH_RATE = 0.01;

begin

var populationChange : real;

var currentPopulation : real;

populationChange := (BIRTH_RATE - DEATH_RATE) * currentPopulation;

if (populationChange > 0) then
writeln(‘Births: ‘, BIRTH_RATE, ‘ Deaths:’, DEATH_RATE, ‘ Change:’,

populationChange)

else if (populationChange < 0) then
writeln(‘Births: ‘, BIRTH_RATE, ‘ Deaths:’, DEATH_RATE, ‘ Change:’,

populationChange)

end.

Getting Started With Pascal Programming 24

James Tam

Storing Information

Information

Could it change?
(Use a variable)

Never changes.
(Use a constant)

• Fractional numbers:
use a “real”

• Whole numbers: use
an “integer”

• Single character: use
a “char”

• Only true or false:
use a “boolean”

• Fractional numbers:
use a “real”

• Whole numbers: use
an “integer”

• Single character: use
a “char”

• Only true or false:
use a “boolean”

James Tam

Output

•Displaying information onscreen

•Done via the write and writeln statements
• Write: displays the output and nothing else (the cursor remains on the line)
• Writeln: displays the output followed by a newline (the cursor moves to the next

line)

Format (literal string of characters):
write (‘a message');

or
writeln(‘a message');

Getting Started With Pascal Programming 25

James Tam

Output (2)

Example (literal string of characters):
The complete example can be found in UNIX under:
/home/231/examples/intro/outputExample1.p (outputExample1 for the
compiled version).

program outputExample1 (output);
begin

write('line1');
writeln('line2');
write('line3');

end.
Style
convention

James Tam

Output Of The Contents Of Variables And
Constants

Format:
write(<name of variable> or <constant>);

or
writeln (<name of variable> or <constant>);

Getting Started With Pascal Programming 26

James Tam

Output Of The Contents Of Variables And
Constants (2)

Example:
The complete example can be found in UNIX under:
/home/231/examples/intro/outputExample2.p (outputExample2 for the
compiled version).

program outputExample2 (output);
const

ACONSTANT = 888;
begin

var num : integer;
num := 7;
writeln(ACONSTANT);
writeln(num);

end.

James Tam

Mixed Output

It’s possible to display literal strings of characters and the
contents of variables and constants with a single write or writeln
statement.

Format:
write('message', <name of variable>, 'message'…);

or
writeln('message', <name of variable>, 'message'…);

Getting Started With Pascal Programming 27

James Tam

Mixed Output (2)

Example:
The complete example can be found in UNIX under:
/home/231/examples/intro/outputExample3.p (outputExample3 for the
compiled version).

program outputExample3 (output);
const

ACONSTANT = 888;
begin

var num : integer;
num := 7;
writeln('ACONSTANT: ', ACONSTANT);
writeln('num=', num);

end.

James Tam

Output: How Do You Make It Look Nice?

P1: How to make output line align/justify from line-to-line?
A1: Set the field width parameter

P2: How to specify the number of places of precision for the
output of real numbers?
A2: Set the parameter for the number of places of precision (only
works for real numbers)

Getting Started With Pascal Programming 28

James Tam

Formatting Output

Automatic formatting of output
• Field width: The computer will insert enough spaces to ensure that the

information can be displayed.
• Decimal places: For real numbers the data will be displayed in

exponential/floating point form.

Manually formatting of output:

Format:
write or writeln (<data>: <Field width for data1>: <Number decimal places for real data1>);

Examples:

var num : real;

num := 12.34;

writeln(num);

writeln(num:5:2);

1 These values can be set to any non-negative integer (zero or greater).

James Tam

Formatting Output (2)

If the field width doesn’t match the actual size of the field
• Field width too small – extra spaces will be added for integer variables

but not for other types of data.
• Examples:

var num : integer;
num := 123456;
writeln(num:3);
writeln('123456':3);

• Field width too large – the data will be right justified (extra spaces will be
put in front of the data).

• Examples:
var num : integer;
num := 123;
writeln(num:6);
writeln('123':6);

Getting Started With Pascal Programming 29

James Tam

Formatting Output (3)

If the number of decimal places doesn’t match the actual number
of decimal places.
• Set the number of decimal places less than the actual number of decimal

places – the number will be rounded up.
• Example One:

var num : real;
num := 123.4567;
writeln (num:6:2);

• Set the number of decimal places greater than the actual number of decimal
places – the number will be padded with zeros.

• Example Two:
var num : real;
num := 123.4567;
writeln(num:6:6);

James Tam

Recall: How Keyboard Input Works

The electrical impulse is sent via a
wired or wireless connection

Keyboard: A
key is pressed

Keyboard controller: based on the
electrical impulses it determines
which key or combination of keys
was pressed

Keyboard buffer: stores the
keystrokes

...elppA
The keyboard controller transmits
an interrupt request

Operating system

Getting Started With Pascal Programming 30

James Tam

Recall: How Keyboard Input Works

Operating system:

Q: Is the key combination a (an
operating) system level command
e.g., <alt>-<ctrl>-?

Yes

Execute operating system
instructionNo

Pass the key combination
onto current application

James Tam

Input

The computer program getting information from the user

Done via the read and readln statements

Format:
read (<name of variable to store the input>);

or
readln (<name of variable to store the input>);

Getting Started With Pascal Programming 31

James Tam

Input (2)

Example:
program inputExampleOne (input, output);
begin

var num : integer;
write(‘Enter an integer: ‘);
readln (num);

end.
A common
style
convention

James Tam

Input: Read Vs. Readln

Both:
• Reads each value entered and matches it to the corresponding variable.

- e.g., read (num)
- If num is an integer then the read statement will try to read an integer value from

the user’s keyboard input.

Read
• If the user inputs additional values before hitting enter, the additional

values will remain in the buffer.

Readln
• Any additional values entered before (and including) the enter key will be

discarded.

Getting Started With Pascal Programming 32

James Tam

Read: Effect On The Keyboard Buffer

program getInput (input, output);
begin

var num : integer;
write('Enter an integer: ');
read(num);

end.

Pascal program

Keyboard: user
types in 27 and
hits enter

James Tam

Read: Effect On The Keyboard Buffer (2)

program getInput (input, output);
begin

var num : integer;
write('Enter an integer: ');
read(num);

end.

Pascal program
<EOL>172

Keyboard controller: determines
which keys were pressed and stores
the values in the keyboard buffer

1 When the user presses the enter key it is stored as the EOL (end-of-line) marker. The EOL marker signals to
the Pascal program that the information has been typed in and it will be processed.

Y Y N
Note: after the read
statement has
executed the pointer
remains at the EOL
marker.

27

RAM
num

Getting Started With Pascal Programming 33

James Tam

Readln: Effect On The Keyboard Buffer

program getInput (input, output);
begin

var num : integer;
write('Enter an integer: ');
readln(num);

end.

Pascal program

Keyboard: user
types in 27 and
hits enter

James Tam

Readln: Effect On The Keyboard Buffer (2)

program getInput (input, output);
begin

var num : integer;
write('Enter an integer: ');
readln(num);

end.

Pascal program
<EOL>172

Keyboard controller: determines
which keys were pressed and stores
the values in the keyboard buffer

1 When the user presses the enter key it is stored as the EOL (end-of-line) marker. The EOL marker signals to
the Pascal program that the information has been typed in and it will be processed.

Y Y N

27

RAM
num

Note: Unlike read, the
readln will move the
pointer past the EOL
marker (input buffer is
emptied and ready for
new input).

Getting Started With Pascal Programming 34

James Tam

Readln: Effect On The Keyboard Buffer (2)

program getInput (input, output);
begin

var num : integer;
write('Enter an integer: ');
readln(num);

end.

Pascal program
<EOL>172

Keyboard controller: determines
which keys were pressed and stores
the values in the keyboard buffer

1 When the user presses the enter key it is stored as the EOL (end-of-line) marker. The EOL marker signals to
the Pascal program that the information has been typed in and it will be processed.

N

Note: Unlike read, the
readln will move the
pointer past the EOL
marker (input buffer is
emptied and ready for
new input).

27

RAM
num

James Tam

Read Vs. Readln

•If no input is read in by the program after a ‘read’ or ‘readln’
statement then both approaches appear identical (the effect of
the pointer staying or moving past the EOL marker has no
visible effect).

•Caution! If the ‘read’ or ‘readln’ statement is followed by
another read or readln then the effect of the extra input
remaining in the keyboard buffer can have unexpected
consequences!

program getInput (input, output);
begin

var num : integer;
write('Enter an integer: ');
readln(num);

end.

After this readln
the program
ends and the
keyboard buffer
is emptied.

Getting Started With Pascal Programming 35

James Tam

Input: Read Vs. Readln (An Example)

For the complete version of this program look in Unix under:
/home/231/examples/intro/read1.p (or read1 for the compiled version):

program read1 (input, output);
begin

var num : integer;
var ch : char;
write('Enter a number: ');
read(num);
write('Enter a character: ');
read(ch);
writeln('You entered num: ', num, ' ch: ', ch);

end.

James Tam

Input: Read Vs. Readln (An example (2))

For the complete version of this program look in Unix under:
/home/231/examples/intro/read2.p (or read2 for the compiled version)

program read2 (input, output);
begin

var num : integer;
var ch : char;
write('Enter a number: ');
readln(num);
write('Enter a character: ');
readln(ch);
writeln('You entered num: ', num, ' ch: ', ch);

end.

Getting Started With Pascal Programming 36

James Tam

General Rule Of Thumb: Use Readln!

When getting input from the user unless there’s a compelling
reason you should use ‘readln’ rather than ‘read’.

(This is an important point: forget at your own peril!)

James Tam

General Rule Of Thumb

The prompt that requests user input should take the form of a
write rather than a writeln:

var num : integer;
write(‘Enter your age: ‘);
readln(age);

Vs.

var num : integer;
writeln (‘Enter your age: ‘);
readln(age);

Getting Started With Pascal Programming 37

James Tam

Another Use For Readln

As an input prompt

e.g.,
writeln('To continue press enter');
readln;
writeln(‘The rest of the program continues..’);

When this
statement is
reached the
program will
pause and wait
for input from the
user.

James Tam

Testing Inputs

program inputChecking (input, output);
begin

var num : integer;
var ch : char;
write('Enter a number and a character: ');
read(num, ch);
writeln('num:', num, '-ch:', ch, '-');

end.

Getting Started With Pascal Programming 38

James Tam

Common Programming Errors

1. Syntax/compile errors

2. Runtime errors

3. Logic errors

James Tam

1. Syntax/ Compilation Errors

Each language has rules about how statements are to be
structured.

English sentence is structured by the grammar of the English
language:
• The cat sleeps the sofa.

Pascal statements are structured by the syntax of the
programming language:
• 5 := num

Grammatically incorrect: missing the preposition to
introduce the prepositional phrase ‘the sofa’

Syntactically incorrect: the left hand side of an assignment
statement cannot be a literal constant.

Getting Started With Pascal Programming 39

James Tam

1. Syntax/Compile Errors (2)

filename.p
(Unix file)

Pascal
program

XEmacs

Text editor

gpc

Pascal
compiler

Syntax error:

No executable
(a.out)
produced.

They occur as the program is being compiled

James Tam

Some Common Syntax Errors

• Missing or mismatching quotes for a write or writeln statement

• Forgetting to separate statements with a semi-colon

• Forgetting the name of the program in the header

• Forgetting the period at the end of the program

• Using identifiers (such as variables or constants) before they’ve
been declared

• Forgetting keywords such as ‘program’, ‘begin’ and ‘end’

Getting Started With Pascal Programming 40

James Tam

2. Runtime Errors

filename.p
(Unix file)

Pascal
program

XEmacs

Text editor

gpc

Pascal
compiler

Machine language
program

a.out (Unix
file)

Executing a.out

Runtime error

(execution stops)

They occur as the program is running and cause execution to stop

James Tam

3. Logic Errors

filename.p
(Unix file)

Pascal
program

XEmacs

Text editor

gpc

Pascal
compiler

Machine language
program

a.out (Unix
file)

Executing a.out
Program finishes
executing but it
may produce an
incorrect result

They occur as the program is running, the program doesn’t abruptly end.

Getting Started With Pascal Programming 41

James Tam

Problem Solving Example: Making Change

(Paraphrased from the book “Pascal: An introduction to the Art
and Science of Programming” by Walter J. Savitch.

Problem statement:

Design a program to make change. Given an amount of money, the
program will indicate how many quarters, dimes and pennies are needed.
The cashier is able to determine the change needed for values of a dollar
and above.

Actions that may be needed:

• Action 1: Prompting for the amount of money

• Action 2: Computing the combination of coins needed to equal this
amount

• Action 3: Output: Display the number of coins needed

James Tam

Program Design: An Example Problem

• However Action 2 (computing change) is still quite large and
may require further decomposition into sub-actions.

• One sensible decomposition is:
• Sub-action 2A: Compute the number of quarters to be given out.
• Sub-action 2B: Compute the number of dimes to be given out.
• Sub-action 2C: Compute the number of pennies to be given out.

Getting Started With Pascal Programming 42

James Tam

Determining What Information Needs To Be
Tracked

1. Amount of change to be returned

2. Number of quarters to be given as change

3. Number of dimes to be given as change

4. Number pennies to be given as change

5. The remaining amount of change still left (changes as
quarters, dimes and pennies are given out)

James Tam

How To Come Up With A Solution

1. If you are truly stuck then STEP AWAY from the computer!

2. Try to picture things in terms of something that you can
relate to (i.e., not Pascal code) but something in the real
world.
a. Make sure that you understand what the problem truly entails by

describing it in terms of what you know e.g., draw pictures, write text
descriptions (English), use physical analogies.

b. Try to work out a solution to the problem in terms of concepts that
you are familiar with e.g., draw pictures, write text descriptions
(English), use physical analogies.

c. Then try to translate your solution to program code.
d. (If you are having trouble going from (b) to (c)) then try to describe

the solution in as much detail as possible using a human language. If
your solution is detailed enough then it’s often just a matter of
working out the syntax when you write program code.

Getting Started With Pascal Programming 43

James Tam

Making Change: Solution

DO NOT LOOK AT THIS SOLUTION BEFORE CLASS!
The full version of this program can be found in UNIX under:
/home/231/examples/intro/change.p

program change (input, output);
begin

var amount : integer;
var quarters : integer;
var dimes : integer;
var pennies : integer;
var amountLeft : integer;

write ('Enter the amount of change from 1 to 99 cents: ');
readln (amount);

James Tam

Making Change: Solution (2)

(* Quarters *)
quarters := amount DIV 25;
amountLeft := amount MOD 25;

(* Dimes *)
dimes := amountLeft DIV 10;
amountLeft := amountLeft MOD 10;

(* Pennies *)
pennies := amountLeft;

Getting Started With Pascal Programming 44

James Tam

Making Change: Solution (3)

(* Display the results. *)
writeln ('Original amount: ', amount, ' pennies');
writeln ('No quarters: ', quarters);
writeln ('No dimes: ', dimes);
writeln ('No pennies: ', pennies);

end.

James Tam

Testing The Solution

•What should be tested? (What inputs should be used)
• Running the program with all possible inputs (time-consuming?)
• Running the program with a subset of the possible inputs (try to catch all

reasonable cases)?

•Not testing the programming or performing minimal testing.
• This may work for small programs
• With anything but a trivial sized program, finding the logical errors may be

next to impossible unless each portion has undergone a reasonable amount
of testing.

Getting Started With Pascal Programming 45

James Tam

You Should Now Know

What is the difference between the two types of translators:
compilers and interpreters.

What is the basic structure of a Pascal program.

How to create, compile and run Pascal programs on the
Computer Science network.

Variables:
• What are they and what are they used for
• How to set aside memory for a variable through a declaration
• How to access and change the value of a variable
• Conventions for naming variables

James Tam

You Should Now Know (2)

Constants:
• What are named constants and how do they differ from variables
• How to declare a named constant
• What are the benefits of using a named constant

How are common mathematical operations performed in Pascal.

Output:
• How to display text messages or the value of a memory location (variable

or constant) onscreen with write and writeln
• How to format the output of a Pascal program

Input:
• How to get a program to acquire and store information from the user of the

program
• What is the difference between read and readln
• How to perform input checking

Getting Started With Pascal Programming 46

James Tam

You Should Now Know (3)

What are the three common programming errors, when do they
occur and what is the difference between each one.

An approach for solving simple problems.

